Group synchronization of diffusively coupled harmonic oscillators
Kybernetika, Tome 52 (2016) no. 4, pp. 629-647 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers group synchronization issue of diffusively directed coupled harmonic oscillators for two cases with nonidentical and identical agent dynamics. For the case of coupled nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed group synchronization can always be achieved under two kinds of network structures, i. e., the strongly connected graph and the acyclic partition topology with a directed spanning tree. It is interesting to find that the group synchronization states under acyclic partition are some periodic orbits with the same frequency and are simply related with the initial values of certain group regardless of ones of the other groups. For the case of coupled identical harmonic oscillators with positive and negative coupling, some generic algebraic criteria on group synchronization with both local continuous and instantaneous interaction are established respectively. In particular, an explicit expression of group synchronization states in terms of initial values of the agents can be obtained by the property of acyclic partition topology, and so it is very convenient to yield the desired group synchronization in practical application. Finally, numerical examples illustrate and visualize the effectiveness and feasibility of theoretical results.
This paper considers group synchronization issue of diffusively directed coupled harmonic oscillators for two cases with nonidentical and identical agent dynamics. For the case of coupled nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed group synchronization can always be achieved under two kinds of network structures, i. e., the strongly connected graph and the acyclic partition topology with a directed spanning tree. It is interesting to find that the group synchronization states under acyclic partition are some periodic orbits with the same frequency and are simply related with the initial values of certain group regardless of ones of the other groups. For the case of coupled identical harmonic oscillators with positive and negative coupling, some generic algebraic criteria on group synchronization with both local continuous and instantaneous interaction are established respectively. In particular, an explicit expression of group synchronization states in terms of initial values of the agents can be obtained by the property of acyclic partition topology, and so it is very convenient to yield the desired group synchronization in practical application. Finally, numerical examples illustrate and visualize the effectiveness and feasibility of theoretical results.
DOI : 10.14736/kyb-2016-4-0629
Classification : 70K40, 74H65
Keywords: group synchronization; coupled harmonic oscillators; directed topology; acyclic partition
@article{10_14736_kyb_2016_4_0629,
     author = {Zhao, Liyun and Liu, Jun and Xiang, Lan and Zhou, Jin},
     title = {Group synchronization of diffusively coupled harmonic oscillators},
     journal = {Kybernetika},
     pages = {629--647},
     year = {2016},
     volume = {52},
     number = {4},
     doi = {10.14736/kyb-2016-4-0629},
     mrnumber = {3565773},
     zbl = {06644314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0629/}
}
TY  - JOUR
AU  - Zhao, Liyun
AU  - Liu, Jun
AU  - Xiang, Lan
AU  - Zhou, Jin
TI  - Group synchronization of diffusively coupled harmonic oscillators
JO  - Kybernetika
PY  - 2016
SP  - 629
EP  - 647
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0629/
DO  - 10.14736/kyb-2016-4-0629
LA  - en
ID  - 10_14736_kyb_2016_4_0629
ER  - 
%0 Journal Article
%A Zhao, Liyun
%A Liu, Jun
%A Xiang, Lan
%A Zhou, Jin
%T Group synchronization of diffusively coupled harmonic oscillators
%J Kybernetika
%D 2016
%P 629-647
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0629/
%R 10.14736/kyb-2016-4-0629
%G en
%F 10_14736_kyb_2016_4_0629
Zhao, Liyun; Liu, Jun; Xiang, Lan; Zhou, Jin. Group synchronization of diffusively coupled harmonic oscillators. Kybernetika, Tome 52 (2016) no. 4, pp. 629-647. doi: 10.14736/kyb-2016-4-0629

[1] Ballard, L., Cao, C. Y., Ren, W.: Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination. IET Control Theory Appl. 4 (2010), 806-816. | DOI | MR

[2] Chen, Y., L$\ddot{\mathrm{u}}$, J. H., Yu, X. H., Lin, Z. L.: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301. | DOI | MR

[3] Cheng, S., Ji, C. J., Zhou, J.: Infinite-time and finite-time synchronization of coupled harmonic oscillators. Physica Scripta 84 (2011), 035006. | DOI | Zbl

[4] Desoer, C., Vidyasagar, M.: Feedback Systems: Input-output Properties. Academic, New York 1975. | MR | Zbl

[5] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, London 2001. | DOI | MR | Zbl

[6] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design. Automatica 62 (2015), 249-262. | DOI | MR | Zbl

[7] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multi-agent systems with stochastic sampling. IEEE Trans. Cybernetics (2016), 1-12. | DOI

[8] Hong, Y. G., Hu, J. P., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. | DOI | MR | Zbl

[9] Horn, R., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge 1990. | DOI | MR | Zbl

[10] Liu, J., Zhou, J.: Distributed impulsive group consensus in second-order multi-agent systems under directed topology. Int. J. Control 88 (2015), 910-919. | DOI | MR | Zbl

[11] Lu, S. J., Chen, L.: A general synchronization method of chaotic communication system via kalman filtering. Kybernetika 44 (2008), 43-52. | MR

[12] Lu, W. L., Liu, B., Chen, T. P.: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20 (2010), 013120. | DOI | MR | Zbl

[13] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553. | MR | Zbl

[14] Qin, J. H., Yu, C. B.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49 (2013), 2898-2905. | DOI | MR

[15] Ren, W.: Synchronization of coupled harmonic oscillators with local interaction. Automatica 44 (2008), 3195-3200. | DOI | MR | Zbl

[16] Ren, W., Cao, Y. C.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer-Verlag, London 2011. | Zbl

[17] Slotine, J. J. E., Li, W. P.: Applied Nonlinear Control. Prentice Hall, N.J. 1991. | Zbl

[18] Su, H. S., Wang, X. F., Lin, Z. L.: Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica 45 (2009), 2286-2291. | DOI | MR | Zbl

[19] Su, H. S., Chen, M., Wang, X. F., Wang, H. W., Valeyev, N. V.: Adaptive cluster synchronisation of coupled harmonic oscillators with multiple leaders. IET Control Theory Appl. 7 (2013), 765-772. | DOI | MR

[20] Wang, K. H., Fu, X. C., Li, K. Z.: Cluster synchronization in community networks with nonidentical nodes. Chaos 19 (2009), 023106. | DOI | MR | Zbl

[21] Wu, W., Zhou, W. J., Chen, T. P.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I. Reg. Pap. 56 (2009), 819-839. | DOI | MR

[22] Xia, W. G., Cao, M.: Clustering in diffusively coupled networks. Automatica 47 (2011), 2395-2405. | DOI | MR | Zbl

[23] Yang, T.: Impulsive Control Theory. Springer 2001. | MR | Zbl

[24] Yu, W. W., Chen, G. R., Cao, M., Kurths, J.: Second-order consensus for multioscillator systems with directed topologies and nonlinear dynamics. IEEE T. Syst. Man Cy. B 40 (2010), 881-891. | DOI

[25] Yu, C. B., Qin, J. H., Gao, H. J.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50 (2014), 2341-2349. | DOI | MR | Zbl

[26] Yu, J. Y., Wang, L.: Group consensus of multi-agent systems with undirected communication graphs. In: Proc. 7th Asian Control Conference 2009, pp. 105-110.

[27] Zhang, H., Zhou, J.: Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Syst. Control Lett. 61 (2012), 1277-1285. | DOI | MR | Zbl

[28] Zhao, L. Y., Wu, Q. J., Zhou, J.: Impulsive sampled-data synchronization of directed coupled harmonic oscillators. In: Proc. 33rd Chinese Control Conference 2014, pp. 3950-3954. | DOI

[29] Zhou, J., Zhang, H., Xiang, L., Wu, Q. J.: Synchronization of coupled harmonic oscillators with local instantaneous interaction. Automatica 48 (2012), 1715-1721. | DOI | MR | Zbl

Cité par Sources :