Keywords: travel time; automatic traffic incident detection (ATID); supporting decision model for police dispatching; police duty scheduling
@article{10_14736_kyb_2016_1_0106,
author = {Zhu, Guangyu and Zhang, Jingxuan and Lin, Haotian and Zhang, Peng},
title = {Automatic detection of urban traffic incidents and supporting decision model for police dispatching based on travel time},
journal = {Kybernetika},
pages = {106--130},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0106},
mrnumber = {3482614},
zbl = {1374.90115},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0106/}
}
TY - JOUR AU - Zhu, Guangyu AU - Zhang, Jingxuan AU - Lin, Haotian AU - Zhang, Peng TI - Automatic detection of urban traffic incidents and supporting decision model for police dispatching based on travel time JO - Kybernetika PY - 2016 SP - 106 EP - 130 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0106/ DO - 10.14736/kyb-2016-1-0106 LA - en ID - 10_14736_kyb_2016_1_0106 ER -
%0 Journal Article %A Zhu, Guangyu %A Zhang, Jingxuan %A Lin, Haotian %A Zhang, Peng %T Automatic detection of urban traffic incidents and supporting decision model for police dispatching based on travel time %J Kybernetika %D 2016 %P 106-130 %V 52 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0106/ %R 10.14736/kyb-2016-1-0106 %G en %F 10_14736_kyb_2016_1_0106
Zhu, Guangyu; Zhang, Jingxuan; Lin, Haotian; Zhang, Peng. Automatic detection of urban traffic incidents and supporting decision model for police dispatching based on travel time. Kybernetika, Tome 52 (2016) no. 1, pp. 106-130. doi: 10.14736/kyb-2016-1-0106
[1] Ahmed, S. A., Cook, A. R.: Time series models for freeway incident detection. Transport. Engrg. J. 106 (1980), 6, 731-745.
[2] Cai, X. Y.: Study of Urban Freeway Automatic Incident Detection Method. Doctor's Degree Thesis, Tongji University, Shangahi 2007.
[3] Cheng, Y., Zhang, M., Yang, D.: Automatic incident detection for urban expressways based on segment traffic flow density. J. Intelligent Transportation Systems: Technology, Planning, and Operations 19 (2015), 2, 205-213. | DOI
[4] Dinh, T.-U., Billot, R., Pillet, E., Faouzi, N.-E. El: Real-time queue-end detection on freeways with floating car data practice-ready algorithm. Transport. Res. Record 2470 (2014), 46-56. | DOI
[5] Dong, W. L., Ding, H.: Development of emergency rescue decision scenarios deduction system of Tianjin. China J. Emergency Resuscitation and Disaster Medicine 6 (2015), 420-423.
[6] Dudek, C. L., Carroll, J. M., Nelson, B. N.: Incident detection on urban freeways. Transport. Res. Record 148 (2002), 1-46.
[7] Jain, S., McLean, C.: Simulation for emergency response: a framework for modeling and simulation for emergency response. In: Proc. 35th Conference on Winter Simulation: Driving Innovation, New Orleans 2003.
[8] Kirschfink, H., Hernández, J., Boero, M.: Intelligent traffic management models. In: Proc. European Symposium on Intelligent Techniques (ESIT) 2000, 9, pp. 36-45.
[9] Levin, M., Krause, G. M.: Incident detection: A Bayesian approach. Transportt. Res. Record 682 (1978), 52-58.
[10] Liu, Q., Lu, J., Chen, S.: Design and analysis of traffic incident detection based on random forest. J. Southeast University: English Edition 1 (2014), 88-95.
[11] Mountain, C. E.: Incident Detection Using the Standard Normal Deviate Model and Travel Time Information from Probe Vehicles. Master's Degree Thesis, Texas A and M University, Texas 1993.
[12] Pascale, A., Deflorio, F., Nicoli, M.: Motorway speed pattern identification from floating vehicle data for freight applications. Transport. Res. Part C: Emerging Technol. 51 (2015), 104-119. | DOI
[13] Payne, H. J.: Freeway Incident Detection Based Upon Pattern Classification. IEEE In Decision and Control including the 14th Symposium on Adaptive Processes, Houston, 1975. | DOI
[14] Raber, E., Hirabayashi, J. M., Mancieri, S. P., Jin, A. L., Folks, K. J., Carlsen, T. M., Estacio, P.: Chemical and biological agent incident response and decision process for civilian and public sector facilities. Risk Analysis 22 (2002), 2, 195-202. | DOI
[15] Ritchie, S. G., Prosser, N. A.: A real-time expert system approach to freeway incident management. Transport. Res. Record 1320 (1990), 7-16. | DOI
[16] Sermons, M. W., Koppelman, F. S.: Use of vehicle positioning data for arterial incident detection. Transport. Res. Part C: Emerging Technol. 4 (1996), 2, 87-96. | DOI
[17] Sethi, V., Bhandari, N. S., Koppelman, F.: Incident detection using fixed detector and probe vehicle data. Transport. Res. Part C: Emerging Technol. 3 (1995), 2, 99-112. | DOI
[18] Suyeong, K.: Theory of Human Intervention and Design of Human-computer Interfaces in Supervisory Control. Doctor's Degree Thesis, Massachusetts Institute of Technology, Boston 1997.
[19] Xu, X., Liu, L.: Comparative assessment of automatic incident detection algorithms based on simulated annealing algorithm. Technology and Economy in Areas of Communications 6 (2004), 2, 42-44.
[20] Xu, Z. X., Xi, S. R., Qu, J. Y.: Multi-attribute analysis of nuclear reactor accident emergency decision making. J. Tsinghua Univ. Science Technol. 3 (2008), 448-451.
[21] Yu, W., Park, S. J., Kim, D. S.: Arterial road incident detection based on time-moving average method in bluetooth-based wireless vehicle reidentification system. J. Transport. Engrg. 141 (2015), 3, 04014084. | DOI
[22] Zhang, W., Xu, J. M., Lin, M. F.: Map matching algorithm of large scale probe vehicle data. J. Transport. System Engrg. Inform. Technol. 7 (2007), 2, 39-45.
[23] Zhang, Q., Zhao, J. X., Dong, D. C.: Design of intelligent decision support system to traffic incident management. J. Railway Science Engrg. 5 (2008), 3, 83-88.
[24] Zhang, R. M., Zhou, Y., Xu, X. Y.: Traffic accident processingint elligent decision support system (YCIDSS). J. Computer Appl. 9 (2002), 60-61.
[25] Zhang, Y., Zuo, X., Zhang, L.: Traffic congestion detection based on GPS floating-car data. Procedia Engrg. 15 (2011), 5541-5546. | DOI
Cité par Sources :