Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
Kybernetika, Tome 52 (2016) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A vector $x$ is said to be an eigenvector of a square max-min matrix $A$ if $A\otimes x=x$. An eigenvector $x$ of $A$ is called the greatest $\textit{\textbf{X}}$-eigenvector of $A$ if $x\in\textit{\textbf{X}}=\{x; {\underline x}\leq x\leq {\overline x}\}$ and $y\leq x$ for each eigenvector $y\in\textit{\textbf{X}}$. A max-min matrix $A$ is called strongly $\textit{\textbf{X}}$-robust if the orbit $x,A\otimes x, A^2\otimes x,\dots$ reaches the greatest $\textit{\textbf{X}}$-eigenvector with any starting vector of $\textit{\textbf{X}}$. We suggest an $O(n^3)$ algorithm for computing the greatest $\textit{\textbf{X}}$-eigenvector of $A$ and study the strong $\textit{\textbf{X}}$-robustness. The necessary and sufficient conditions for strong $\textit{\textbf{X}}$-robustness are introduced and an efficient algorithm for verifying these conditions is described.
DOI : 10.14736/kyb-2016-1-0001
Classification : 08A72, 90B35, 90C47
Keywords: eigenvector; interval vector; max-min matrix
@article{10_14736_kyb_2016_1_0001,
     author = {Plavka, J\'an},
     title = {Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra},
     journal = {Kybernetika},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2016},
     doi = {10.14736/kyb-2016-1-0001},
     mrnumber = {3482607},
     zbl = {06562209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/}
}
TY  - JOUR
AU  - Plavka, Ján
TI  - Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
JO  - Kybernetika
PY  - 2016
SP  - 1
EP  - 14
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/
DO  - 10.14736/kyb-2016-1-0001
LA  - en
ID  - 10_14736_kyb_2016_1_0001
ER  - 
%0 Journal Article
%A Plavka, Ján
%T Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
%J Kybernetika
%D 2016
%P 1-14
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/
%R 10.14736/kyb-2016-1-0001
%G en
%F 10_14736_kyb_2016_1_0001
Plavka, Ján. Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra. Kybernetika, Tome 52 (2016) no. 1, pp. 1-14. doi : 10.14736/kyb-2016-1-0001. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/

Cité par Sources :