Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
Kybernetika, Tome 52 (2016) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A vector $x$ is said to be an eigenvector of a square max-min matrix $A$ if $A\otimes x=x$. An eigenvector $x$ of $A$ is called the greatest $\textit{\textbf{X}}$-eigenvector of $A$ if $x\in\textit{\textbf{X}}=\{x; {\underline x}\leq x\leq {\overline x}\}$ and $y\leq x$ for each eigenvector $y\in\textit{\textbf{X}}$. A max-min matrix $A$ is called strongly $\textit{\textbf{X}}$-robust if the orbit $x,A\otimes x, A^2\otimes x,\dots$ reaches the greatest $\textit{\textbf{X}}$-eigenvector with any starting vector of $\textit{\textbf{X}}$. We suggest an $O(n^3)$ algorithm for computing the greatest $\textit{\textbf{X}}$-eigenvector of $A$ and study the strong $\textit{\textbf{X}}$-robustness. The necessary and sufficient conditions for strong $\textit{\textbf{X}}$-robustness are introduced and an efficient algorithm for verifying these conditions is described.
DOI :
10.14736/kyb-2016-1-0001
Classification :
08A72, 90B35, 90C47
Keywords: eigenvector; interval vector; max-min matrix
Keywords: eigenvector; interval vector; max-min matrix
@article{10_14736_kyb_2016_1_0001,
author = {Plavka, J\'an},
title = {Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra},
journal = {Kybernetika},
pages = {1--14},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2016},
doi = {10.14736/kyb-2016-1-0001},
mrnumber = {3482607},
zbl = {06562209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/}
}
TY - JOUR
AU - Plavka, Ján
TI - Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
JO - Kybernetika
PY - 2016
SP - 1
EP - 14
VL - 52
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/
DO - 10.14736/kyb-2016-1-0001
LA - en
ID - 10_14736_kyb_2016_1_0001
ER -
Plavka, Ján. Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra. Kybernetika, Tome 52 (2016) no. 1, pp. 1-14. doi: 10.14736/kyb-2016-1-0001
Cité par Sources :