Keywords: eigenvector; interval vector; max-min matrix
@article{10_14736_kyb_2016_1_0001,
author = {Plavka, J\'an},
title = {Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra},
journal = {Kybernetika},
pages = {1--14},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0001},
mrnumber = {3482607},
zbl = {06562209},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/}
}
TY - JOUR
AU - Plavka, Ján
TI - Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra
JO - Kybernetika
PY - 2016
SP - 1
EP - 14
VL - 52
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0001/
DO - 10.14736/kyb-2016-1-0001
LA - en
ID - 10_14736_kyb_2016_1_0001
ER -
Plavka, Ján. Computing the greatest ${\bf X}$-eigenvector of a matrix in max-min algebra. Kybernetika, Tome 52 (2016) no. 1, pp. 1-14. doi: 10.14736/kyb-2016-1-0001
[1] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. | DOI
[2] Cechlárová, K.: Eigenvectors in Bottleneck algebra. Linear Algebra Appl. 175 (1992), 63-73. | DOI | MR | Zbl
[3] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer-Verlag, Berlin 2006. | MR | Zbl
[4] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542. | MR | Zbl
[5] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[6] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3. | MR
[7] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra. Kybernetika 46 (2010), 3, 387-396. | MR | Zbl
[8] Lacko, V., Berežný, Š.: The color-balanced spanning tree problem. Kybernetika 41 (2005), 539-546. | MR | Zbl
[9] Molnárová, M., Pribiš, J.: Matrix period in max-algebra. Discrete Applied Mathematics 103 (2000), 167-175. | DOI | MR | Zbl
[10] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra and Its Appl. 438 (2013), 8, 3350-3364. | DOI | MR
[11] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. | DOI
[12] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. | DOI
[13] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[14] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Applied Math. 159 (2011), 5, 381-388. | DOI | MR | Zbl
[15] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Applied Math. 160 (2012), 640-647. | DOI | MR
[16] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. | MR | Zbl
[17] Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Appl. 126 (1989), 39-78. | DOI | MR | Zbl
[18] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. | DOI | MR | Zbl
[19] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. | DOI | MR | Zbl
[20] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. | DOI | MR | Zbl
[21] Zimmermann, K.: Extremální algebra (in Czech). Ekon. ústav ČSAV Praha, 1976. | MR
Cité par Sources :