Keywords: membership functions; aggregation functions; preferences; commutative queries; non-commutative queries; empty and overabundant answers; application
@article{10_14736_kyb_2015_6_0994,
author = {Hudec, Miroslav and Vu\v{c}eti\'c, Miljan},
title = {Some issues of fuzzy querying in relational databases},
journal = {Kybernetika},
pages = {994--1022},
year = {2015},
volume = {51},
number = {6},
doi = {10.14736/kyb-2015-6-0994},
mrnumber = {3453682},
zbl = {06537792},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-0994/}
}
TY - JOUR AU - Hudec, Miroslav AU - Vučetić, Miljan TI - Some issues of fuzzy querying in relational databases JO - Kybernetika PY - 2015 SP - 994 EP - 1022 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-0994/ DO - 10.14736/kyb-2015-6-0994 LA - en ID - 10_14736_kyb_2015_6_0994 ER -
Hudec, Miroslav; Vučetić, Miljan. Some issues of fuzzy querying in relational databases. Kybernetika, Tome 51 (2015) no. 6, pp. 994-1022. doi: 10.14736/kyb-2015-6-0994
[1] Andreasen, T., Pivert, O.: On the weakening of fuzzy relational queries. In: Proc. 8th International Symposium on Methodologies for Intelligent Systems, Charlotte 1994, pp. 144-151. | DOI
[2] Bilgiç, T., Türkşen, I. B.: Measurement and elicitation of membership functions. In: Handbook of Granular Computing (W. Pedrycz, A. Skowron and V. Kreinovich, eds.), Wiley-Interscience, Chichester, West Sussex 2008, pp. 141-153. | DOI
[3] Boole, G.: The calculus of logic. Cambridge and Dublin Math. J. III (1848), 183-198.
[4] Bosc, P., Hadjali, A., Pivert, O., Smits, G.: An approach based on predicate correlation to the reduction of plethoric answer sets. In: Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, Volume 398 (F. Guillet, B. Pinaud, G. Venturini and D.A. Zighed, eds.), Springer-Verlag, Heidelberg 2012, pp. 213-233. | DOI
[5] Bosc, P., Brando, C., Hadjali, A., Jaudoin, H., Pivert, O.: Semantic proximity between queries and the empty answer problem. In: Proc. Joint IFSA-EUSFLAT Conference, Lisbon 2009, pp. 259-264.
[6] Bosc, P., Kraft, D., Petry, F.: Fuzzy sets in database and information systems: Status and opportunities. Fuzzy Sets and Systems 156 (2005), 418-426. | DOI | MR
[7] Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets and Systems 159 (2008), 1450-1467. | DOI | MR | Zbl
[8] Bosc, P., Hadjali, A., Pivert, O.: Weakening of fuzzy relational queries: and absolute proximity relation-based approach. Mathware and Soft Comput. 14 (2007), 35-55. | MR
[9] Bosc, P., Pivert, O., Smits, G.: On a fuzzy group-by and its use for fuzzy association rule mining. In: Proc. 14th East-European Conference on Advances in Databases and Information Systems (ADBIS'10), Novi Sad 2010, pp. 88-102. | DOI
[10] Bosc, P., Pivert, O.: On a fuzzy bipolar relational algebra. Inform. Sci. 219 (2013), 1-16. | DOI | MR | Zbl
[11] Bosc, P., Pivert, O.: On four noncommutative fuzzy connectives and their axiomatization. Fuzzy Sets and Systems 202 (2012), 42-60. | DOI | MR | Zbl
[12] Bosc, P., Pivert, O.: SQLf query functionality on top of a regular relational database management system. In: Knowledge Management in Fuzzy Databases (M. Pons, M. Vila and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 2000, pp. 171-190. | DOI | Zbl
[13] Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Systems 3 (1995), 1-17. | DOI
[14] Bosc, P., Pivert, O., Mokhtari, A.: On fuzzy queries with contextual predicates. In: Proc. International Conference on Fuzzy Systems (FUZZ-IEEE 2009), Jeju Island 2009, pp. 484-489. | DOI
[15] Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan Kaufman, San Francisco 2005. | DOI | Zbl
[16] Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 97-114. | DOI
[17] Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: Why and how?. In: Flexible Query Answering Systems (T. Andreasen, H. Christiansen and H. L. Larsen, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 45-60. | DOI | Zbl
[18] Dubois, D., Prade, H.: Weighted minimum and maximum operations. Inform. Sci. 39 (1986), 205-210. | DOI | MR | Zbl
[19] Garibaldi, J. M., John, R. I.: Choosing membership functions of linguistic terms. In: Proc. 12th IEEE International Conference on Fuzzy Systems (FUZZ'03), St. Louis 2003, pp. 578-583. | DOI
[20] George, R., Srikanth, R.: Data summarization using genetic algorithms and fuzzy logic. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Physica Verlag, Heidelberg 1996, pp. 599-611.
[21] Glöckner, I.: Quantifier selection for linguistic data summarization. In: Proc. IEEE International Conference on Fuzzy Systems, Vancouver 2006, pp. 720-727. | DOI
[22] Gupta, M., Qi, J.: Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems 40 (1991), 431-450. | DOI | MR | Zbl
[23] Hudec, M., Vuc̆etić, M., Vujošević, M.: Synergy of linguistic summaries and fuzzy functional dependencies for mining knowledge in the data. In: Proc. 18th IEEE International Conference on System Theory, Control and Computing (ICSTCC 2014), Sinaia 2013, pp. 335-340.
[24] Hudec, M.: Issues in construction of linguistic summaries. In: Proc. Uncertainty Modelling 2013 (R. Mesiar and T. Bacigál, eds.), STU, Bratislava 2013, pp. 35-44.
[25] Hudec, M.: Improvement of data collection and dissemination by fuzzy logic. In: Joint UNECE/Eurostat/OECD Meeting on the Management of Statistical Information Systems (MSIS 2013), Paris - Bangkok 2013.
[26] Hudec, M., Vuc̆etić, M., Vujošević, M.: Comparison of linguistic summaries and fuzzy functional dependencies related to data mining. In: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining (S. Alam, G. Dobbie, Y. Sing Koh and S. ur Rehman, eds.), Information Science Reference, Hershey 2014, pp. 174-203.
[27] Hudec, M.: Fuzzy improvement of the SQL. Yugoslav J. Oper. Res. 21 (2011), 2, 239-251. | DOI | Zbl
[28] Hudec, M.: An approach to fuzzy database querying, analysis and realisation. Computer Sci. Inform. Systems 6 (2009), 2, 127-140. | DOI
[29] Hudec, M., Sudzina, F.: Construction of fuzzy sets and applying aggregation operators for fuzzy queries. In: Proc. 14th International Conference on Enterprise Information Systems (ICEIS 2012), Wroclaw 2012, Proceedings volume 1, pp. 253-257. | DOI
[30] Kacprzyk, J., Zadrożny, S.: Protoforms of linguistic database summaries as a human consistent tool for using natural language in data mining. Int. J. Software Sci. and Comput. Intel. 1 (2009), 100-111. | DOI
[31] Kacprzyk, J., Zadrożny, S.: FQUERY for Access: Fuzzy querying for windows-based DBMS. In: Fuzziness in Database Management Systems (P. Bosc and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 1995, pp. 415-433. | DOI
[32] Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III +: A “human-consistent” database querying system based on fuzzy logic with linguistic quantifiers. Information Systems 14 (1989), 6, 443-453. | DOI
[33] Kacprzyk, J., Ziółkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans. Systems, Man and Cybernetics SMC-16 (1986), 3, 474-479. | DOI
[34] Kacprzyk, J., Pasi, G., .Vojtáš, P, Zadrożny, S.: Fuzzy querying: issues and perspectives. Kybernetika 36 (2000), 6, 605-616.
[35] Kacprzyk, J., Yager, R. R.: Linguistic summaries of data using fuzzy logic. International Journal of General Systems 30 (2001), 133-154. | DOI | MR | Zbl
[36] Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Inform. Sci. 134 (2001), 71-109. | DOI | Zbl
[37] Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl
[38] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall, New Jersey 2005. | Zbl
[39] Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proc. 13th International Conference on Very Large Databases, Brighton, 1987 pp. 217-225.
[40] Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press, London 2012. | DOI | Zbl
[41] Rasmussen, D., Yager, R.: Summary SQL - A fuzzy tool for data mining. Intelligent Data Analysis 1 (1997), 49-58. | DOI
[42] Ribeiro, R., Moreira, A.: Fuzzy query interface for a business database. Int. J. of Human-Computer Studies 58 (2003), 363-391. | DOI
[43] Radojević, D.: Interpolative realization of Boolean algebra as a consistent frame for gradation and/or fuzziness. In: Forging New Frontiers: Fuzzy Pioneers II Studies in Fuzziness and Soft Computing (M. Nikravesh, J. Kacprzyk and L. Zadeh, eds.), Springer-Verlag, Berlin Heidelberg 2008, pp. 295-318. | DOI
[44] Rosado, A., Ribeiro, R., Zadrożny, S., Kacprzyk, J.: Flexible query languages for relational databases: An overview. In: Flexible Databases Supporting Imprecision and Uncertainty. Studies in fuzziness and soft computing, Vol. 203 (G. Bordogna and G. Psaila, eds.), Springer-Verlag, Berlin Heidelberg 2006, pp. 3-53. | DOI
[45] Siler, W., Buckley, J.: Fuzzy Expert Systems and Fuzzy Reasoning. John Wiley and Sons, New Jersey 2005. | DOI
[46] Smits, G., Pivert, O., Girault, T.: ReqFlex: Fuzzy queries for everyone. In: Proc. 39th International Conference on Very Large Data Bases, Trento 2013, pp. 1206-1209. | DOI
[47] Smits, G., Pivert, O., Girault, T.: Towards reconciling expressivity, efficiency and user-friendliness in database flexible querying. In: Proc. 22th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), Hyderabad 2013, pp. 1-8. | DOI
[48] Smits, G., Pivert, O., Hadjali, A.: Fuzzy cardinalities as a basis to cooperative answering. In: Flexible Approaches in Data, Information and Knowledge Management (O. Pivert and S. Zadrożny, eds.), Studies in Computational Intelligence, volume 497, Springer, Berlin Heidelberg 2013, pp. 261-289. | DOI
[49] Tahani, V.: A conceptual framework for fuzzy query processing: a step toward very intelligent database systems. Inform. Processing and Management 13 (1977), 5, 289-303. | DOI | Zbl
[50] Tudorie, C., Bumbaru, S., Dumitriu, L.: Relative qualification in database flexible queries. In: Proc. 3rd International IEEE Conference on Intelligent Systems, London 2006, pp. 83-88. | DOI
[51] Tudorie, C.: Qualifying objects in classical relational database querying. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 218-245. | DOI
[52] Tudorie, C.: Intelligent interfaces for database fuzzy querying. The annals of Dunarea de Jos University of Galati, Fascicle III 32 (2009), 2.
[53] Verkulien, J.: Assigning membership in a fuzzy set analysis. Sociological Methods Res. 33 (2005), 462-496. | DOI | MR
[54] Vuc̆etić, M., Vujošević, M.: A literature overview of functional dependencies in fuzzy relational database models. Technics Technologies Education Management 7 (2012), 4, 1593-1604.
[55] Wang, T. C., Lee, H. D., Chen, C. M.: Intelligent queries based on fuzzy set theory and SQL. In: Proc. Joint Conference on Information Science, Salt Lake City 2007, pp. 1426-1432. | DOI
[56] Werro, N., Meier, A., Mezger, C., Schindler, G.: Concept and implementation of a fuzzy classification query language. In: Proc. International Conference on Data Mining, Las Vegas 2005, pp. 208-214.
[57] Wu, H. C.: Fuzzy Systems and Neural Networks. National Chi Nan University, Puli, Nantou 2002.
[58] Yager, R.: Higher structures in multi-criteria decision making. International Journal of Man-Machine Studies 36 (1992), 553-570. | DOI
[59] Yager, R. R.: On ordered weighted averaging operators in multicriteria decision making. IEEE Trans. Systems, Man and Cybernetics SMC-18 (1988), 183-190. | DOI | MR
[60] Yager, R. R.: A new approach to the summarization of data. Information Sciences 28 (1982), 69-86. | DOI | MR | Zbl
[61] Ying, M.: Implication operators in fuzzy logic. IEEE Trans. Fuzzy Systems 10 (2002), 1, 88-91. | DOI
[62] Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computers and Math. Appl. 9 (1983), 149-184. | DOI | MR | Zbl
[63] Zadeh, L.: Fuzzy sets. Information and Control 8 (1965), 338-353. | DOI | MR | Zbl
[64] Zadrożny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying. J. Intell. Inform. Systems 33 (2009), 307-325. | DOI
[65] Zadrożny, S., Kacprzyk, J.: Bipolar queries: a way to enhance the flexibility of database queries. In: Advances in Data Management, Studies in Computational Intelligence, Vol. 223 (Z. W. Ras and A. Dardzinska, eds.), Springer-Verlag, Berlin Heidelberg 2009, pp. 49-66. | DOI | MR
[66] Zadrożny, S., Tré, G. de, Caluwe, R. de, Kacprzyk, J.: An overview of fuzzy approaches to flexible database querying. In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 34-55. | DOI
[67] Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M.: Fuzzification of the OWA operators for aggregating uncertain information with uncertain weights. In: Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (R. R. Yager, J. Kacprzyk and G. Beliakov, eds.), Studies in Fuzziness and Soft Computing Volume 265, Springer-Verlag, Berlin Heidelberg 2011, pp. 91-109. | DOI | MR
[68] Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems 159 (2008), 3281-3296. | DOI | MR
[69] Zimmerman, H. J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets and Systems 4 (1980), 37-51. | DOI
Cité par Sources :