Keywords: fuzzy connectives; distributivity functional equations; T-norms; T-conorms; uninorms
@article{10_14736_kyb_2015_4_0678,
author = {Qin, Feng},
title = {Cauchy-like functional equation based on a class of uninorms},
journal = {Kybernetika},
pages = {678--698},
year = {2015},
volume = {51},
number = {4},
doi = {10.14736/kyb-2015-4-0678},
mrnumber = {3423194},
zbl = {06530338},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0678/}
}
Qin, Feng. Cauchy-like functional equation based on a class of uninorms. Kybernetika, Tome 51 (2015) no. 4, pp. 678-698. doi: 10.14736/kyb-2015-4-0678
[1] Aczél, J.: Lectures on Functional Equations and Their Applications. Acad. Press, New York 1966. | DOI | MR | Zbl
[2] Aczél, J., Maksa, G., Taylor, M.: Equations of generalized bisymmetry and of consistent aggregation: Weakly surjective solutions which may be discontinuous at places. J. Math. Anal. Appl. 214 (1997), 1, 22-35. | DOI | MR | Zbl
[3] Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Systems 17 (2009), 3, 590-603. | DOI
[4] Beliakov, G., Calvo, T., Pradera, A.: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin - Heidelberg 2007.
[5] Benvenuti, P., Vivona, D.: General theory of the fuzzy integral. Mathware Soft Comput. 3 (1996), 199-209. | MR | Zbl
[6] Combs, W. E., Andrews, J. E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Systems 6 (1) (1998), 1, 1-11. | DOI
[7] Baets, B. De, Meyer, H. De, Mesiar, R.: Binary survival aggregation functions. Fuzzy Sets and Systems 191 (2012), 82-102. | DOI | MR | Zbl
[8] Díaz, S., Montes, S., Baets, B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems 15 (2007), 2, 275-286. | DOI
[9] Dubois, D., Fodor, J., Prade, H., Roubens, M.: Aggregation of decomposable measures with application to utility theory. Theory Decision 41 (1996), 59-95. | DOI | MR | Zbl
[10] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994. | DOI | Zbl
[11] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainly and Knowledge-Based Systems 5 (1997), 411-427. | DOI | MR | Zbl
[12] Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Hertfordshire 2001. | MR | Zbl
[13] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | DOI | MR | Zbl
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. | DOI | MR | Zbl
[15] McConway, K. J.: Marginalization and linear opinion pools. J. Amer. Stat. Assoc. 76 (1981), 410-414. | DOI | MR | Zbl
[16] Qin, F.: Cauchy like functional equation based on continuous t-conorms and representable uninorms. IEEE Trans. Fuzzy Systems 20 (2013), 126-132. | DOI
[17] Qin, F., Baczyński, M.: Distributivity equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 21 (2012), 1, 153-167. | DOI
[18] Qin, F., Baczyński, M.: Distributivity equations of implications based on continuous triangular conorms (II). Fuzzy Sets and Systems 240 (2014), 86-102. | DOI | MR | Zbl
[19] Qin, F., Yang, P. C.: On the distributive equation of implication based on a continuous t-norm and a continuous Archimedean t-conorm. In: BMEI, 4th International Conference 4, 2011, pp. 2290-2294.
[20] Qin, F., Yang, L.: Distributivity equations of implications based on nilpotent triangular norms. Int. J. Approx. Reason. 51 (2010), 984-992. | DOI | MR
[21] Rudas, I. J., Pap, E., Fodor, J.: Information aggregation in intelligent systems: An application oriented approach. Knowledge-Based Systems 38 (2013), 3-13. | DOI
[22] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38. | MR | Zbl
[23] Saminger, S., Mesiar, R., Bodenhofer, U.: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 10/s (2002), 11-35. | DOI | MR | Zbl
[24] Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation Operators and Commuting. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1032-1045. | DOI
[25] Su, Y., Wang, Z., Tang, K.: Left and right semi-uninorms on a complete lattice. Kybernetika 49 (2013), 6, 948-961. | MR | Zbl
[26] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120. | DOI | MR | Zbl
Cité par Sources :