Keywords: stochastic programming problems; stability; Wasserstein metric; ${\cal L}_{1}$ norm; Lipschitz property; empirical estimates; convergence rate; linear and nonlinear dependence; probability and risk constraints; stochastic dominance
@article{10_14736_kyb_2015_3_0433,
author = {Ka\v{n}kov\'a, Vlasta and Houda, Michal},
title = {Thin and heavy tails in stochastic programming},
journal = {Kybernetika},
pages = {433--456},
year = {2015},
volume = {51},
number = {3},
doi = {10.14736/kyb-2015-3-0433},
mrnumber = {3391678},
zbl = {06487089},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0433/}
}
TY - JOUR AU - Kaňková, Vlasta AU - Houda, Michal TI - Thin and heavy tails in stochastic programming JO - Kybernetika PY - 2015 SP - 433 EP - 456 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-3-0433/ DO - 10.14736/kyb-2015-3-0433 LA - en ID - 10_14736_kyb_2015_3_0433 ER -
Kaňková, Vlasta; Houda, Michal. Thin and heavy tails in stochastic programming. Kybernetika, Tome 51 (2015) no. 3, pp. 433-456. doi: 10.14736/kyb-2015-3-0433
[1] Barrio, E., Giné, E., Matrán, E.: Central limit theorems for a Wasserstein distance between empirical and the true distributions. Ann. Probab. 27 (1999), 2, 1009-1071. | DOI | MR
[2] Billingsley, P.: Ergodic Theory and Information. John Wiley and Sons, New York 1965. | MR | Zbl
[3] Birge, J. R., Louveaux, F.: Introduction in Stochastic Programming. Springer, Berlin 1992.
[4] Dai, L., Chen, C.-H., Birge, J. R.: Convergence properties of two-stage stochastic programming. J. Optim. Theory Appl. 106 (2000), 489-509. | DOI | MR | Zbl
[5] Dentcheva, D., Ruszczynski, A.: Porfolio optimization with stochastic dominance constraints. J. Banking and Finance 30 (2006), 433-451. | DOI
[6] Dupačová, J., B.Wets, R. J.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517-1549. | DOI | MR
[7] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and the classical multinomial estimate. Ann. Math. Statist. 56 (1956), 642-669. | DOI | MR
[8] Ermoliev, Y. M., Norkin, V.: Sample everage approximation method for compound stochastic optimization problems. SIAM J. Optim. 23 (2013), 4, 2231-2263. | DOI | MR
[9] Gut, A.: Probability: A Graduate Course. Springer, New York 2005. | MR | Zbl
[10] Houda, M.: Stability and Approximations for Stochastic Programs. Doctoral Thesis, Faculty of Mathematics and Physics, Charles University Prague, Prague 2009.
[11] Houda, M., Kaňková, V.: Empirical estimates in economic and financial optimization problems. Bull. Czech Econometr. Soc. 19 (2012), 29, 50-69.
[12] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.: Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189-208. | DOI | MR | Zbl
[13] Kaňková, V.: Optimum solution of a stochastic optimization problem. In: Trans. 7th Prague Conf. 1974, Academia, Prague 1977, pp. 239-244. | MR | Zbl
[14] Kaňková, V.: An approximative solution of stochastic optimization problem. In: Trans. 8th Prague Conf., Academia, Prague 1978, pp. 349-353. | MR
[15] Kaňková, V., Lachout, P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 4, 497-523. | MR | Zbl
[16] Kaňková, V.: Stability in stochastic programming - the case of unknown location parameter. Kybernetika 29 (1993), 1, 97-112. | MR | Zbl
[17] Kaňková, V.: A note on estimates in stochastic programming. J. Comput. Appl. Math. 56 (1994), 97-112. | DOI | MR | Zbl
[18] Kaňková, V.: On the stability in stochastic programming: the case of individual probability constraints. Kybernetika 33 (1997), 5, 525-544. | MR | Zbl
[19] Kaňková, V., Houda, M.: Empirical estimates in stochastic programming. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MATFYZPRESS, Prague 2006, pp. 426-436. | Zbl
[20] Kaňková, V., Houda, M.: Dependent samples in empirical estimation of stochastic programming problems. Austrian J. Statist. 35 (2006), 2 - 3, 271-279.
[21] Kaňková, V.: Empirical estimates in stochastic programming via distribution tails. Kybernetika 46 (2010), 3, 459-471. | MR
[22] Kaňková, V.: Empirical estimates in optimization problems: survey with special regard to heavy tails and dependent samples. Bull. Czech Econometr. Soc. 19 (2012), 30, 92-111.
[23] Kaňková, V.: Risk measures in optimization problems via empirical estimates. Czech Econom. Rev. VII (2013), 3, 162-177.
[24] Klebanov, L. B.: Heavy Tailed Distributions. MATFYZPRESS, Prague 2003.
[25] Meerschaert, M. M., H.-P.Scheffler: Limit Distributions for Sums of Independent Random Vectors (Heavy Tails in Theory and Practice). John Wiley and Sons, New York 2001. | MR
[26] Meerschaert, M. M., H.-P.Scheffler: Portfolio Modelling with Heavy Tailed Random Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595-640.
[27] Meerschaert, M. M., H.-P.Scheffler: Portfolio Modeling with Heavy Tailed Random Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595-640.
[28] Pflug, G. Ch.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Ser. B 89 (2001), 251-271. | DOI | MR
[29] Pflug, G. Ch.: Stochastic Optimization and Statistical Inference. In: Handbooks in Operations Research and Managemennt 10, Stochastic Programming (A. Ruszczynski and A. A. Shapiro, eds.) Elsevier, Amsterdam 2003, pp. 427-480. | MR
[30] Pflug, G. Ch., Römisch, W.: Modeling Measuring and Managing Risk. World Scientific Publishing Co. Pte. Ltd, New Jersey 2007. | MR | Zbl
[31] Rachev, S. T., Römisch, W.: Quantitative stability and stochastic programming: the method of probabilistic metrics. Math. Oper. Res. 27 (2002), 792-818. | DOI | MR
[32] Rockafellar, R., Wets, R. J. B.: Variational Analysis. Springer, Berlin 1983. | Zbl
[33] Römisch, W., Wakolbinger, A.: Obtaining Convergence Rate for Approximation in Stochastic Programming. In: Parametric Optimization and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer and F. Nožička, eds.), Akademie-Verlag, Berlin 1987, pp. 327-343. | MR
[34] Römisch, W.: Stability of Stochastic Programming Problems. In: Handbooks in Operations Research and Managemennt Science 10, Stochastic Programming (A. Ruszczynski and A. A. Shapiro, eds.) Elsevier, Amsterdam 2003, pp. 483-554. | MR
[35] Salinetti, G., Wets, R. J.-B.: On the convergence of sequence of convex sets in finite dimensions. SIAM Rev. 21 (1979), 16-33. | DOI | MR
[36] Samarodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman and Hall, New York 1994.
[37] Schulz, R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6 (1996), 4, 1138-1152. | DOI | MR
[38] Shapiro, A.: Quantitative stability in stochastic programming. Math. Program. 67 (1994), 99-108. | DOI | MR | Zbl
[39] Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation. Optimization 57 (2008), 395-418. | DOI | MR | Zbl
[40] Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming (Modeling and Theory). Published by Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia 2009. | MR | Zbl
[41] Shiryaev, A. N.: Essential of Stochastic Finance (Facts, Models, Theory). World Scientific, New Jersey 2008. | MR
[42] Shorack, G. R., Wellner, J. A.: Empirical Processes and Applications to Statistics. Wiley, New York 1986. | MR
[43] Šmíd, M.: The expected loss in the discretezation of multistage stochastic programming problems - estimation and convergence rate. Ann. Oper. Res. 165 (2009), 1, 29-45. | DOI | MR
[44] Wets, R. J.-B.: A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse. Research Report, University of Kentucky 1974.
Cité par Sources :