Why $\lambda $-additive (fuzzy) measures?
Kybernetika, Tome 51 (2015) no. 2, pp. 246-254
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is concerned with generalized (i. e. monotone and possibly non-additive) measures. A discussion concerning the classification of these measures, according to the type and amount of non-additivity, is done. It is proved that $\lambda$-additive measures appear naturally as solutions of functional equations generated by the idea of (possible) non additivity.
The paper is concerned with generalized (i. e. monotone and possibly non-additive) measures. A discussion concerning the classification of these measures, according to the type and amount of non-additivity, is done. It is proved that $\lambda$-additive measures appear naturally as solutions of functional equations generated by the idea of (possible) non additivity.
DOI : 10.14736/kyb-2015-2-0246
Classification : 28A23, 28E05, 28E10, 39B05, 39B22, 60A86
Keywords: generalized measure (probability); $\lambda $-additive measure; functional equation
@article{10_14736_kyb_2015_2_0246,
     author = {Chi\c{t}escu, Ion},
     title = {Why $\lambda $-additive (fuzzy) measures?},
     journal = {Kybernetika},
     pages = {246--254},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.14736/kyb-2015-2-0246},
     mrnumber = {3350559},
     zbl = {06487076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0246/}
}
TY  - JOUR
AU  - Chiţescu, Ion
TI  - Why $\lambda $-additive (fuzzy) measures?
JO  - Kybernetika
PY  - 2015
SP  - 246
EP  - 254
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0246/
DO  - 10.14736/kyb-2015-2-0246
LA  - en
ID  - 10_14736_kyb_2015_2_0246
ER  - 
%0 Journal Article
%A Chiţescu, Ion
%T Why $\lambda $-additive (fuzzy) measures?
%J Kybernetika
%D 2015
%P 246-254
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-2-0246/
%R 10.14736/kyb-2015-2-0246
%G en
%F 10_14736_kyb_2015_2_0246
Chiţescu, Ion. Why $\lambda $-additive (fuzzy) measures?. Kybernetika, Tome 51 (2015) no. 2, pp. 246-254. doi: 10.14736/kyb-2015-2-0246

[1] Aczel, J.: Lectures on Functional Equations and Their Applications. Dover Publications, Inc. Mineola, New York 2006. | Zbl

[2] Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Doctoral Dissertation, Tokyo Institute of Technology, 1974.

[3] Wang, Z.: Une classe de mesures floues - les quasi-mesures. BUSEFAL 6 (1981), 28-37.

[4] Wang, Z., Klir, G.: Generalized Measure Theory. Springer (IFSR Internat. Ser. Systems Sci. Engrg. 25) (2009). | DOI | MR | Zbl

Cité par Sources :