Keywords: consensus clustering; differential evolution; ensemble; data
@article{10_14736_kyb_2014_5_0661,
author = {Sabo, Miroslav},
title = {Consensus clustering with differential evolution},
journal = {Kybernetika},
pages = {661--678},
year = {2014},
volume = {50},
number = {5},
doi = {10.14736/kyb-2014-5-0661},
mrnumber = {3301853},
zbl = {1308.62132},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-5-0661/}
}
Sabo, Miroslav. Consensus clustering with differential evolution. Kybernetika, Tome 50 (2014) no. 5, pp. 661-678. doi: 10.14736/kyb-2014-5-0661
[1] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. 2001 ACM SIGMOD International Conference on Management of data 27 (1998), 2, pp. 94-105.
[2] Bache, K., Lichman, M.: UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml
[3] Bailey, K. D.: Typologies and Taxonomies: An Introduction to Classification Techniques. Sage Publications Inc., Los Angeles 1994.
[4] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York 1981. | MR | Zbl
[5] Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Sys. Man Cyber., Part A: Systems and Humans 38 (2008), 1, 218-237. | DOI
[6] Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977), 1, 1-38. | MR | Zbl
[7] Dimitriadou, E.: cclust: Convex Clustering Methods and Clustering Indexes, 2012. URL http://CRAN.R-project.org/package=cclust
[8] Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19 (2003), 9, 1090-2003. | DOI
[9] Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd International Conference on Knowledge Discovery and Data Mining 1996, pp. 226-231.
[10] Fern, X., Brodley, C.: Solving cluster ensemble problems by bipartite graph partitioning. In: Proc. 21st International Conference on Machine learning 2004, pp. 36-43.
[11] Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis and density estimation. J. Amer. Statist. Assoc. 97 (2002), 611-631. | DOI | MR | Zbl
[12] Fraley, C., Raftery, A. E.: MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering. Techn. Report 504, University of Washington, Department of Statistics, 2006.
[13] Ghaemi, R., Sulaiman, N., Ibrahim, H., Mustapha, N.: A survey: Clustering ensembles techniques. In: Proc. International Conference on Computer, Electrical, and Systems Science, and Engineering (CESSE) 38 (2009), pp. 644-653.
[14] Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1 (2011), 4, 305-315.
[15] Gould, S. J.: Full House: The Spread of Excellence from Plato to Darwin. Harmony, New York 1996.
[16] Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: Part i. SIGMOD Record 31 (2002), 2, 40-45. | DOI
[17] Handl, J., Knowles, J.: Multi-objective clustering and cluster validation. In: Multi-Objective Machine Learning (Studies in Computational Intelligence, Vol, 16), Springer, Berlin 2006, pp. 21-47.
[18] Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evolutionary Comput. 11 (2007), 56-76. | DOI
[19] Handl, J., Knowles, J., Kell, D.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21 (2005), 15, 3201-3212. | DOI
[20] Hartigan, J., Wong, M.: A k-means clustering algorithm. Applied Statistics 28 (1979), 100-108. | DOI | Zbl
[21] Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical $k$-means clustering. J. Statist. Software 50 (2012), 10, 1-22. | DOI
[22] Hruschka, E., Campello, R., Freitas, A., Carvalho, A. de: A survey of evolutionary algorithms for clustering. IEEE Trans. Sys. Man Cyber. Part C: Applications and Reviews 39 (2009), 2, 133-155. | DOI
[23] Jain, A. K.: Data clustering: 50 years beyond k-means. Pattern Recognition Lett. 31 (2010), 8, 651-666.
[24] Jain, A. K., Murty, M. N., Flynn, P. J.: Data clustering: A review. ACM Comput. Surveys 31 (1999), 3, 316-323.
[25] Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Statist. Software 11 (2004), 9, 1-20.
[26] Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Applications in vlsi domain. In: Proc. Design and Automation Conference, 1997, pp. 526-529.
[27] Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York 1990. | MR
[28] Krishna, K., Murty, M. Narasimha: Genetic k-means algorithm. Trans. Sys. Man Cyber. Part B 29 (1999), 3, 433-439. | DOI
[29] Kwedlo, W.: A clustering method combining differential evolution with the k-means algorithm. Pattern Recognition Letters 32 (2011), 12, 1613-1621. | DOI
[30] MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability 1 (1967), pp. 281-297. | MR | Zbl
[31] Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions, 2013. R package version 1.14.4.
[32] Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52 (2003), 1-2, 91-118. | DOI | Zbl
[33] Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim: An R package for global optimization by differential evolution. J. Statist. Software 40 (2011), 6, 1-26. | DOI
[34] Murthy, C., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recognition Lett. 17 (1996), 8, 825-832.
[35] Pal, S. K., Majumder, D. D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Trans. Sys. Man Cyber. 7 (1977), 625-629. | DOI
[36] Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Comput. Statist. Data Anal. 50 (2006), 5, 1220-1247. | DOI | MR
[37] Price, K. V., Storn, R. M., Lampinen, J. A.: Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag, Berlin 2006. | MR | Zbl
[38] Raghavan, V., Birchand, K.: A clustering strategy based on a formalism of the reproductive process in a natural system. In: Proc. Second International Conference on Information Storage and Retrieval, 1979, pp. 10-22.
[39] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2012. URL http://www.R-project.org/
[40] Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2000), 8, 888-905.
[41] Simovici, D. A., Djeraba, Ch.: Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Advanced information and knowledge processing. Springer, London 2008. | MR | Zbl
[42] Simpson, T. I., Armstrong, J. D., Jarman, A. P.: Merged consensus clustering to assess and improve class discovery with microarray data. BMC Bioinform. 11 (2010), 11-590. | DOI
[43] Sneath, P. H.: The application of computers to taxonomy. Journal of general microbiology 17 (1957), 1, 201-226. | DOI
[44] Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997), 4, 341-359. | DOI | MR | Zbl
[45] Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining partitionings. In: Proc. 11th National Conference On Artificial Intelligence, NCAI, Edmonton, Alberta 2002, pp. 93-98. | MR
[46] Topchy, A., Jain, A., Punch, W.: A mixture model of clustering ensembles. In: Proc. SIAM International Conference on Data Mining 2004, pp. 22-24.
[47] Trotter, W. M.: Combinatorics and Partially Ordered Sets. The Johns Hopkins University Press, Baltimore 1992. | MR | Zbl
[48] Tvrdík, J., Křivý, I.: Differential evolution with competing strategies applied to partitional clustering. Lecture Notes Comput. Sci. 7269 (2012), 136-144. | DOI
[49] Wang, P., Domeniconi, C., Laskey, K.: Nonparametric bayesian clustering ensembles. Lecture Notes Comput. Sci. 6323 (2010), 3, 435-450. | DOI
[50] Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. Stat. Anal. Data Min. 4 (2011), 1, 54-70. | DOI | MR
[51] Wikipedia: Partition of a set. http://en.wikipedia.org/wiki/Partition_of_a_set
[52] Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16 (2005), 3, 645-678. | DOI
[53] Zahn, Ch. T.: Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20 (1971), 31, 68-86.
Cité par Sources :