Distances on the tropical line determined by two points
Kybernetika, Tome 50 (2014) no. 3, pp. 408-435
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p'$ and $q'$ be points in $\mathbb{R}^n$. Write $p'\sim q'$ if $p'-q'$ is a multiple of $(1,\ldots,1)$. Two different points $p$ and $q$ in $\mathbb{R}^n/\sim$ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p'$ and $q'$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.
Let $p'$ and $q'$ be points in $\mathbb{R}^n$. Write $p'\sim q'$ if $p'-q'$ is a multiple of $(1,\ldots,1)$. Two different points $p$ and $q$ in $\mathbb{R}^n/\sim$ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p'$ and $q'$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.
DOI : 10.14736/kyb-2014-3-0408
Classification : 05C50, 14T05, 15A80
Keywords: tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph
@article{10_14736_kyb_2014_3_0408,
     author = {Puente, Mar{\'\i}a Jes\'us de la},
     title = {Distances on the tropical line determined by two points},
     journal = {Kybernetika},
     pages = {408--435},
     year = {2014},
     volume = {50},
     number = {3},
     doi = {10.14736/kyb-2014-3-0408},
     mrnumber = {3245538},
     zbl = {06357558},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/}
}
TY  - JOUR
AU  - Puente, María Jesús de la
TI  - Distances on the tropical line determined by two points
JO  - Kybernetika
PY  - 2014
SP  - 408
EP  - 435
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/
DO  - 10.14736/kyb-2014-3-0408
LA  - en
ID  - 10_14736_kyb_2014_3_0408
ER  - 
%0 Journal Article
%A Puente, María Jesús de la
%T Distances on the tropical line determined by two points
%J Kybernetika
%D 2014
%P 408-435
%V 50
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/
%R 10.14736/kyb-2014-3-0408
%G en
%F 10_14736_kyb_2014_3_0408
Puente, María Jesús de la. Distances on the tropical line determined by two points. Kybernetika, Tome 50 (2014) no. 3, pp. 408-435. doi: 10.14736/kyb-2014-3-0408

[1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Handbook of Linear Algebra (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007, chapter 25.

[2] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P.: Synchronization and Linearity. John Wiley, Chichester, New York 1992. | MR | Zbl

[3] Baker, M., Faber, X.: Metric properties of the tropical Abel-Jacobi map. J. Algebr. Comb. 33 (2011), 349-381. | DOI | MR | Zbl

[4] Billera, L. J., Holmes, S. P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27 (2001), 4, 733-767. | DOI | MR | Zbl

[5] Brugallé, E.: Un peu de géométrie tropicale. Quadrature 74 (2009), 10-22. | DOI | Zbl

[6] Brugallé, E.: Some aspects of tropical geometry. Newsletter Europ. Math. Soc. 83 (2012), 23-28. | MR | Zbl

[7] Butkovič, P.: Simple image set of $(\operatorname{max},+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. | DOI | MR

[8] Butkovič, P.: Max-plus Linear Systems: Theory and Algorithms. Springer-Verlag, Berlin 2010. | MR

[9] Chan, M.: Tropical hyperelliptic curves. J. Algebr. Comb. 37 (2013), 331-359. | DOI | MR | Zbl

[10] Cohen, G., Gaubert, S., Quadrat, J. P.: Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395-422. | MR | Zbl

[11] Cuninghame-Green, R. A.: Minimax algebra. Lecture Notes in Econom and Math. Systems 166, Springer-Verlag, Berlin 1970. | MR | Zbl

[12] Cuninghame-Green, R. A.: Minimax algebra and applications. In: Adv. Imag. Electr. Phys. 90 (P. Hawkes, ed.), Academic Press, New York 1995, pp. 1-121. | Zbl

[13] Cuninghame-Green, R.A., Butkovič, P.: Bases in max-algebra. Linear Algebra Appl. 389 (2004) 107-120. | DOI | MR | Zbl

[14] Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic) (2004), 205-206. | MR | Zbl

[15] Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. In: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ. Press, Cambridge 2005, pp. 213-242. | MR | Zbl

[16] Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601 (2006), 139-157. | MR | Zbl

[17] Gathmann, A.: Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein 108 (2006), 1, 3-32. | MR | Zbl

[18] Gaubert, S., Plus, Max: Methods and applications of $(\operatorname{max}, +)$ linear algebra.

[19] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. New Models and Algorithms. Springer-Verlag, Berlin 2008. | MR | Zbl

[20] (ed.), J. Gunawardena: Idempotency. Publications of the Newton Institute, Cambridge Univ. Press, Cambridge 1998. | MR | Zbl

[21] Itenberg, I., Brugallé, E., Tessier, B.: Géométrie tropicale. Editions de l'École Polythecnique, Paris, 2008.

[22] Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Birkhäuser, Basel 2007. | MR | Zbl

[23] Johnson, M., Kambites, M.: Idempotent tropical matrices and finite metric spaces. Adv. in Geom. 14 (2014), 2, 253-276. DOI: 10.1515/advgeom-2013-0034 ( | DOI | DOI

[24] Jiménez, A., Puente, M. J. de la: Six combinatorial classes of maximal convex tropical polyhedra. ArXiv: 1205.4162 ( , 2012. | arXiv

[25] Joyner, D., Ksir, A., Melles, C. G.: Automorphism groups on tropical curves. Some cohomology calculations. Beitr. Algebra Geom. 53 (2012), 1, 41-56. | DOI | MR | Zbl

[26] Linde, J., Puente, M. J. de la: Matrices commuting with a given normal tropical matrix. ArXiv: 1209.0660v2 ( , 2014. | arXiv

[27] Litvinov, G. L., Maslov, V. P.: Idempotent mathematics and mathematical physics. Proc. Vienna 2003, American Mathematical Society, Contemp. Math. 377 (2005). | MR | Zbl

[28] Litvinov, G. L., Sergeev, S. N.: Tropical and idempotent mathematics. Proc. Moscow 2007, American Mathematical Society, Contemp. Math. 495 (2009). | MR | Zbl

[29] Mikhalkin, G.: Tropical geometry and its applications. In: Proc. International Congress of Mathematicians, ICM Madrid 2006, (M. Sanz-Solé et al., eds.), Invited lectures, v. II, EMS Ph., Zurich 2006, pp. 827-852. | MR | Zbl

[30] Mikhalkin, G.: Moduli spaces of rational tropical curves. In: Proc. 13th Gökova Geometry-Topology Conference 2006 (S. Akbulut, T. Onder and R. J. Stern, eds.), International Press, Cambridge, MA 2007, pp. 39-51. | MR | Zbl

[31] Mikhalkin, G.: What is a tropical curve?. Notices AMS 2007, 511-513. | MR

[32] Puente, M. J. de la: On tropical Kleene star matrices and alcoved polytopes. Kybernetika 49 (2013), 6, 897-910. | MR

[33] Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. In: [27], pp. 289-317. | MR | Zbl

[34] Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4 (2004), 389-411. | DOI | MR | Zbl

[35] Speyer, D., Sturmfels, B.: Tropical mathematics. Math. Mag. 82 (2009), 163-173. | DOI | MR | Zbl

[36] Sturmfels, B.: Solving systems of polynomial equations. CBMS Regional Conference Series in Math. 97, AMS, Providence 2002. | MR | Zbl

[37] Sturmfels, B., Yu, J.: Classification of six-point metrics. Electron. J. Combinatorics 11 (2004), 44 pp. | MR | Zbl

[38] Tabera, L. F.: Tropical constructive Pappus's theorem. IMRN 39 (2005), 2373-2389. | DOI | MR

[39] Viro, O.: Dequantization of real algebraic geometry on logarithmic paper. European Congress of Mathematics, Vol. I (Barcelona 2000), Prog. Math. 201, Birkhäuser, Basel, 2001, pp. 135-146. | MR | Zbl

[40] Viro, O.: On basic concepts of tropical geometry. Proc. Steklov Inst. Math. 273 (2011), 252-282. | MR | Zbl

[41] Wagneur, E.: Finitely generated moduloïds. The existence and unicity problem for bases. In: Analysis and Optimization of Systems, Antibes, 1988 (J. L. Lions and A. Bensoussan, eds.), LNCIS 111, Springer-Verlag, Berlin 1988, pp. 966-976. | MR

[42] Yoeli, M.: A note on a generalization of boolean matrix theory. Amer. Math. Monthly 68 (1961), 6, 552-557. | DOI | MR | Zbl

[43] Zimmermann, K.: Extremální algebra. Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV 46 (1976), Prague 1976, in Czech.

Cité par Sources :