Distances on the tropical line determined by two points
Kybernetika, Tome 50 (2014) no. 3, pp. 408-435.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p'$ and $q'$ be points in $\mathbb{R}^n$. Write $p'\sim q'$ if $p'-q'$ is a multiple of $(1,\ldots,1)$. Two different points $p$ and $q$ in $\mathbb{R}^n/\sim$ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p'$ and $q'$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$.
DOI : 10.14736/kyb-2014-3-0408
Classification : 05C50, 14T05, 15A80
Keywords: tropical distance; integer length; tropical line; normal matrix; idempotent matrix; caterpillar tree; metric graph
@article{10_14736_kyb_2014_3_0408,
     author = {Puente, Mar{\'\i}a Jes\'us de la},
     title = {Distances on the tropical line determined by two points},
     journal = {Kybernetika},
     pages = {408--435},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2014},
     doi = {10.14736/kyb-2014-3-0408},
     mrnumber = {3245538},
     zbl = {06357558},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/}
}
TY  - JOUR
AU  - Puente, María Jesús de la
TI  - Distances on the tropical line determined by two points
JO  - Kybernetika
PY  - 2014
SP  - 408
EP  - 435
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/
DO  - 10.14736/kyb-2014-3-0408
LA  - en
ID  - 10_14736_kyb_2014_3_0408
ER  - 
%0 Journal Article
%A Puente, María Jesús de la
%T Distances on the tropical line determined by two points
%J Kybernetika
%D 2014
%P 408-435
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/
%R 10.14736/kyb-2014-3-0408
%G en
%F 10_14736_kyb_2014_3_0408
Puente, María Jesús de la. Distances on the tropical line determined by two points. Kybernetika, Tome 50 (2014) no. 3, pp. 408-435. doi : 10.14736/kyb-2014-3-0408. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0408/

Cité par Sources :