Keywords: compositional expression; compositional model; running intersection property; perfect sequence
@article{10_14736_kyb_2014_3_0322,
author = {Malvestuto, Francesco M.},
title = {Equivalence of compositional expressions and independence relations in compositional models},
journal = {Kybernetika},
pages = {322--362},
year = {2014},
volume = {50},
number = {3},
doi = {10.14736/kyb-2014-3-0322},
mrnumber = {3245534},
zbl = {06357554},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0322/}
}
TY - JOUR AU - Malvestuto, Francesco M. TI - Equivalence of compositional expressions and independence relations in compositional models JO - Kybernetika PY - 2014 SP - 322 EP - 362 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0322/ DO - 10.14736/kyb-2014-3-0322 LA - en ID - 10_14736_kyb_2014_3_0322 ER -
%0 Journal Article %A Malvestuto, Francesco M. %T Equivalence of compositional expressions and independence relations in compositional models %J Kybernetika %D 2014 %P 322-362 %V 50 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-3-0322/ %R 10.14736/kyb-2014-3-0322 %G en %F 10_14736_kyb_2014_3_0322
Malvestuto, Francesco M. Equivalence of compositional expressions and independence relations in compositional models. Kybernetika, Tome 50 (2014) no. 3, pp. 322-362. doi: 10.14736/kyb-2014-3-0322
[1] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. Assoc. Comput. Mach. 30 (1983), 479-513. | DOI | MR | Zbl
[2] Blair, J. R. S., Peyton, B.W.: An Introduction to Chordal Graphs and Clique Trees. Technical Report ORNL/TM-12203, 1992. | MR | Zbl
[3] Csiszár, I.: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146-158. | DOI | MR | Zbl
[4] Dawid, A. P.: Applications of a general propagation algorithm for probabilistic expert systems. Statist. Comput. 2 (1992), 25-36. | DOI
[5] Deming, W. E., Stephan, F. F.: On least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11 (1940), 427-444. | DOI | MR
[6] Hara, H., Takemura, A.: Boundary cliques, clique trees and perfect sequences of maximaal cliques of a chordal graph. arXiv:cs/0607055v1 [cs.DM], 11 July 2006, pp. 1-24. | MR
[7] Jiroušek, R.: Composition of probability measures on finite spaces. In: Proc. XIII International Conf. on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281.
[8] Jiroušek, R.: Decomposition of multidimensional distributions represented by perfect sequences. Ann. Math. Artif. Intelligence 5 (2002), 215-226. | DOI | MR | Zbl
[9] Jiroušek, R.: Detection of independence relations from persegrams. In: Proc. VI International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Annecy 2002, Vol. C, pp. 1261-1267.
[10] Jiroušek, R.: Persegrams of compositional models revisited: conditional independence. In: Proc. XII International Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (L. Magdalena, M. Ojeda-Aciego and J. L. Verdegay, eds.), Malaga 2008, pp. 915-922.
[11] Jiroušek, R.: Foundations of compositional model theory. Internat. J. General Systems 40 (2011), 623-678. | DOI | MR | Zbl
[12] Jiroušek, R.: Local computations in Dempster-Shafer theory of evidence. Internat. J. Approx. Reason. 53 (2012), 1155-1167. | DOI | MR | Zbl
[13] Jiroušek, R., Shenoy, P. P.: Compositional models in valuation-based systems. Internat. J. Approx. Reason. 55 (2014), 277-293. | DOI | MR | Zbl
[14] Jiroušek, R., Vejnarová, J.: General framework for multidimensional models. Internat. J. Approx. Reas. 18 (2003), 107-127. | Zbl
[15] Jiroušek, R., Vejnarová., J., Daniels, M.: Composition models of belief functions. In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová, and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
[16] Kratochvíl, V.: Characteristic properties of equivalent structures in compositional models. Internat. J. Approx. Reason. 52 (2011), 599-612. | DOI | MR | Zbl
[17] Kratochvíl, V.: Probabilistic compositional models: solution of an equivalence problem. Internat. J. Approx. Reason. 54 (2013), 590-601. | DOI | MR
[18] Lauritzen, S. L.: Graphical Models. Oxford University Press, Oxford 1996. | MR
[19] Lenz, H.-J., Talheim, B.: A formal framework of aggregation for the OLAP-OLTP model. J. of Universal Computer Science 15 (2009), 273-303. | MR
[20] Malvestuto, F. M.: Tree and local computations in a cross-entropy minimization problem with marginal constraints. Kybernetika 46 (2010), 621-654. | MR | Zbl
[21] Malvestuto, F. M.: The sum-product algorithm: algebraic independence and computational aspects. Kybernetika 49 (2013), 4-22. | MR
[22] Malvestuto, F. M.: A join-like operator to combine data cubes, and answer queries from multiple data cubes. Unpublished manuscript, 2013.
[23] Malvestuto, F. M., Pourabbas, E.: Local computation of answers to table queries on summary databases. In: Proc. XVII International Conference on Scientific and Statistical Database Management, Santa Barbara 2005, pp. 263-270.
[24] Mosteller, F.: On pooling data. J. Amer. Statist. Assoc. 43 (1948), 231-242. | DOI
[25] Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Pub., San Mateo 1988. | MR | Zbl
[26] Pourabbas, E., Shoshani, A.: Efficient estimation of joint queries from multiple OLAP databases. ACM Trans. Database Systems 32 (2007), 1, Article No. 2. | DOI
[27] Pourabbas, E., Shoshani, A.: Improving estimation accuracy of aggregate queries on data cubes. Data and Knowledge Engrg. 69 (2010), 50-72. | DOI
[28] Shenoy, P. P., Shafer, G.: Axioms for probability and belief-function propagation. In: Uncertainty in Artificial Intelligence (R. D. Shachter, T. Levitt, J. F. Lemmer, and L. N. Kanel, eds.), North-Holland 1990, Vol. 4. | MR
[29] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13 (1984), 566-579. | DOI | MR | Zbl
[30] Verma, V., Gagliardi, F., Ferretti, C.: On Pooling Data and Measures. Working Paper No. 84 University of Siena, 2009.
[31] Vomlel, J.: Integrating inconsistent data in a probabilistic model. J. Appl. Non-Classical Logics 49 (2003), 4-22. | Zbl
Cité par Sources :