The irrelevant information principle for collective probabilistic reasoning
Kybernetika, Tome 50 (2014) no. 2, pp. 175-188.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Within the framework of discrete probabilistic uncertain reasoning a large literature exists justifying the maximum entropy inference process, $\operatorname{\mathbf{ME}}$, as being optimal in the context of a single agent whose subjective probabilistic knowledge base is consistent. In particular Paris and Vencovská completely characterised the $\operatorname{\mathbf{ME}}$ inference process by means of an attractive set of axioms which an inference process should satisfy. More recently the second author extended the Paris-Vencovská axiomatic approach to inference processes in the context of several agents whose subjective probabilistic knowledge bases, while individually consistent, may be collectively inconsistent. In particular he defined a natural multi-agent extension of the inference process $\operatorname{\mathbf{ME}}$ called the social entropy process, $\operatorname{\mathbf{SEP}}$. However, while $\operatorname{\mathbf{SEP}}$ has been shown to possess many attractive properties, those which are known are almost certainly insufficient to uniquely characterise it. It is therefore of particular interest to study those Paris-Vencovská principles valid for $\operatorname{\mathbf{ME}}$ whose immediate generalisations to the multi-agent case are not satisfied by $\operatorname{\mathbf{SEP}}$. One of these principles is the Irrelevant Information Principle, a powerful and appealing principle which very few inference processes satisfy even in the single agent context. In this paper we will investigate whether $\operatorname{\mathbf{SEP}}$ can satisfy an interesting modified generalisation of this principle.
DOI : 10.14736/kyb-2014-2-0175
Classification : 03B42, 03B48, 60A99, 68T37, 94A17
Keywords: uncertain reasoning; discrete probability function; social inference process; maximum entropy; Kullback–Leibler; irrelevant information principle
@article{10_14736_kyb_2014_2_0175,
     author = {Adam\v{c}{\'\i}k, Martin and Wilmers, George},
     title = {The irrelevant information principle for collective probabilistic reasoning},
     journal = {Kybernetika},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2014},
     doi = {10.14736/kyb-2014-2-0175},
     mrnumber = {3216989},
     zbl = {1297.68221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0175/}
}
TY  - JOUR
AU  - Adamčík, Martin
AU  - Wilmers, George
TI  - The irrelevant information principle for collective probabilistic reasoning
JO  - Kybernetika
PY  - 2014
SP  - 175
EP  - 188
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0175/
DO  - 10.14736/kyb-2014-2-0175
LA  - en
ID  - 10_14736_kyb_2014_2_0175
ER  - 
%0 Journal Article
%A Adamčík, Martin
%A Wilmers, George
%T The irrelevant information principle for collective probabilistic reasoning
%J Kybernetika
%D 2014
%P 175-188
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0175/
%R 10.14736/kyb-2014-2-0175
%G en
%F 10_14736_kyb_2014_2_0175
Adamčík, Martin; Wilmers, George. The irrelevant information principle for collective probabilistic reasoning. Kybernetika, Tome 50 (2014) no. 2, pp. 175-188. doi : 10.14736/kyb-2014-2-0175. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-2-0175/

Cité par Sources :