Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 137-159.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. $\circ$ $\mathcal{P}_{\rm lf,c}$ (Every locally finite connected graph has a maximal independent set). $\circ$ $\mathcal{P}_{\rm lc,c}$ (Every locally countable connected graph has a maximal independent set). $\circ$ CAC$^{\aleph_{\alpha}}_{1}$ (If in a partially ordered set all antichains are finite and all chains have size $\aleph_{\alpha}$, then the set has size $\aleph_{\alpha}$) if $\aleph_{\alpha}$ is regular. $\circ$ CWF (Every partially ordered set has a cofinal well-founded subset). $\circ$ $\mathcal{P}_{G,H_{2}} $ (For any infinite graph $ G=(V_{G}, E_{G}) $ and any finite graph $ H=(V_{H}, E_{H})$ on 2 vertices, if every finite subgraph of $G$ has a homomorphism into $H$, then so has $G$). $\circ$ If $ G=(V_{G},E_{G}) $ is a connected locally finite chordal graph, then there is an ordering ``$$" of $V_{G}$ such that $\{w v \colon \{w,v\} \in E_{G}\}$ is a clique for each $v\in V_{G}$.
DOI : 10.14712/1213-7243.2023.028
Classification : 03E25, 03E35, 05C69, 06A07
Keywords: variants of chain/antichain principle; graph homomorphism; maximal independent sets; cofinal well-founded subsets of partially ordered sets; axiom of choice; Fraenkel--Mostowski (FM) permutation models of ZFA + $\neg$ AC
@article{10_14712_1213_7243_2023_028,
     author = {Banerjee, Amitayu},
     title = {Maximal independent sets, variants of chain/antichain principle and cofinal subsets without {AC}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {137--159},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2023},
     doi = {10.14712/1213-7243.2023.028},
     mrnumber = {4658996},
     zbl = {07790588},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.028/}
}
TY  - JOUR
AU  - Banerjee, Amitayu
TI  - Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 137
EP  - 159
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.028/
DO  - 10.14712/1213-7243.2023.028
LA  - en
ID  - 10_14712_1213_7243_2023_028
ER  - 
%0 Journal Article
%A Banerjee, Amitayu
%T Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 137-159
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.028/
%R 10.14712/1213-7243.2023.028
%G en
%F 10_14712_1213_7243_2023_028
Banerjee, Amitayu. Maximal independent sets, variants of chain/antichain principle and cofinal subsets without AC. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 137-159. doi : 10.14712/1213-7243.2023.028. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.028/

Cité par Sources :