Isomorphic properties in spaces of compact operators
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 175-184.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the definition of $p$-limited completely continuous operators, $1\le p\infty$. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators.
DOI : 10.14712/1213-7243.2023.026
Classification : 46B20, 46B25, 46B28
Keywords: $p$-limited set; limited set; space of compact operators
@article{10_14712_1213_7243_2023_026,
     author = {Ghenciu, Ioana},
     title = {Isomorphic properties in spaces of compact operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {175--184},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2023},
     doi = {10.14712/1213-7243.2023.026},
     mrnumber = {4658998},
     zbl = {07790590},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.026/}
}
TY  - JOUR
AU  - Ghenciu, Ioana
TI  - Isomorphic properties in spaces of compact operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 175
EP  - 184
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.026/
DO  - 10.14712/1213-7243.2023.026
LA  - en
ID  - 10_14712_1213_7243_2023_026
ER  - 
%0 Journal Article
%A Ghenciu, Ioana
%T Isomorphic properties in spaces of compact operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 175-184
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.026/
%R 10.14712/1213-7243.2023.026
%G en
%F 10_14712_1213_7243_2023_026
Ghenciu, Ioana. Isomorphic properties in spaces of compact operators. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 175-184. doi : 10.14712/1213-7243.2023.026. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.026/

Cité par Sources :