Fréchet differentiability via partial Fréchet differentiability
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 185-207.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X_1, \dots, X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times\dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots, X_{n-1}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma$-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \to Y$ is a Lipschitz mapping, then there exists a $\sigma$-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.
DOI : 10.14712/1213-7243.2023.025
Classification : 46G05, 46T20
Keywords: Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma$-porous set
@article{10_14712_1213_7243_2023_025,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Fr\'echet differentiability via partial {Fr\'echet} differentiability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {185--207},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2023},
     doi = {10.14712/1213-7243.2023.025},
     mrnumber = {4658999},
     zbl = {07790591},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.025/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - Fréchet differentiability via partial Fréchet differentiability
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 185
EP  - 207
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.025/
DO  - 10.14712/1213-7243.2023.025
LA  - en
ID  - 10_14712_1213_7243_2023_025
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T Fréchet differentiability via partial Fréchet differentiability
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 185-207
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.025/
%R 10.14712/1213-7243.2023.025
%G en
%F 10_14712_1213_7243_2023_025
Zajíček, Luděk. Fréchet differentiability via partial Fréchet differentiability. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 2, pp. 185-207. doi : 10.14712/1213-7243.2023.025. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.025/

Cité par Sources :