More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 1, pp. 63-72.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let ${\mathbb{V}}$ be a separable real Hilbert space, $k \in {\mathbb{N}}$ with $k \dim {\mathbb{V}}$, and let $B$ be convex and closed in ${\mathbb{V}}$. Let ${\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\mathbb{V}}$. A point $w \in B$ is called exposed by ${\mathcal{P}}$ if there is a $P \in {\mathcal{P}}$ so that $(w + P) \cap B =\{w\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal{P}}$ points whenever ${\mathcal{P}}$ is dense and $G_{\delta}$. In addition, we discuss the question when the set of exposed by some ${\mathcal{P}}$ points forms a $G_{\delta}$-set.
DOI : 10.14712/1213-7243.2023.018
Classification : 52A07, 52A20
Keywords: convex set; extremal point; exposed point; Hilbert space; Grassmann manifold
@article{10_14712_1213_7243_2023_018,
     author = {Barov, Stoyu T.},
     title = {More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and {Hilbert} space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2023},
     doi = {10.14712/1213-7243.2023.018},
     mrnumber = {4631790},
     zbl = {07790582},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.018/}
}
TY  - JOUR
AU  - Barov, Stoyu T.
TI  - More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 63
EP  - 72
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.018/
DO  - 10.14712/1213-7243.2023.018
LA  - en
ID  - 10_14712_1213_7243_2023_018
ER  - 
%0 Journal Article
%A Barov, Stoyu T.
%T More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 63-72
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.018/
%R 10.14712/1213-7243.2023.018
%G en
%F 10_14712_1213_7243_2023_018
Barov, Stoyu T. More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 1, pp. 63-72. doi : 10.14712/1213-7243.2023.018. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.018/

Cité par Sources :