A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 1, pp. 127-135.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct a Hausdorff topological group $G$ such that $\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures" (2008) in the negative.
DOI : 10.14712/1213-7243.2023.016
Classification : 22A05, 54D30, 54G20, 54H11
Keywords: $\mathbb{R}$-factorizable; cellularity; $C$-embedded; Sorgenfrey line; $P$-group; Dieudonné completion; Hewitt--Nachbin completion; Bohr topology
@article{10_14712_1213_7243_2023_016,
     author = {Tkachenko, Mikhail},
     title = {A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2023},
     doi = {10.14712/1213-7243.2023.016},
     mrnumber = {4631595},
     zbl = {07790587},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.016/}
}
TY  - JOUR
AU  - Tkachenko, Mikhail
TI  - A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 127
EP  - 135
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.016/
DO  - 10.14712/1213-7243.2023.016
LA  - en
ID  - 10_14712_1213_7243_2023_016
ER  - 
%0 Journal Article
%A Tkachenko, Mikhail
%T A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 127-135
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.016/
%R 10.14712/1213-7243.2023.016
%G en
%F 10_14712_1213_7243_2023_016
Tkachenko, Mikhail. A countably cellular topological group all of whose countable subsets are closed need not be $\mathbb{R}$-factorizable. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 1, pp. 127-135. doi : 10.14712/1213-7243.2023.016. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.016/

Cité par Sources :