Hyperplanes in matroids and the axiom of choice
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 4, pp. 423-441.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that in set theory without the axiom of choice ZF, the statement sH: ``Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it'' implies AC$^{\rm fin}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^{\rm fin}$ in terms of ``graphic'' matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?
DOI : 10.14712/1213-7243.2023.010
Classification : 03E25, 05B99
Keywords: axiom of choice; finitary matroid; circuit; hyperplane; graph
@article{10_14712_1213_7243_2023_010,
     author = {Morillon, Marianne},
     title = {Hyperplanes in matroids and the axiom of choice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {423--441},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2022},
     doi = {10.14712/1213-7243.2023.010},
     mrnumber = {4577876},
     zbl = {07729552},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.010/}
}
TY  - JOUR
AU  - Morillon, Marianne
TI  - Hyperplanes in matroids and the axiom of choice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 423
EP  - 441
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.010/
DO  - 10.14712/1213-7243.2023.010
LA  - en
ID  - 10_14712_1213_7243_2023_010
ER  - 
%0 Journal Article
%A Morillon, Marianne
%T Hyperplanes in matroids and the axiom of choice
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 423-441
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.010/
%R 10.14712/1213-7243.2023.010
%G en
%F 10_14712_1213_7243_2023_010
Morillon, Marianne. Hyperplanes in matroids and the axiom of choice. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 4, pp. 423-441. doi : 10.14712/1213-7243.2023.010. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.010/

Cité par Sources :