Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 315-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that for any $c \geq 5$, there exists an infinite family $(G_n )_{n\in \mathbb{N}}$ of graphs such that $\chi(G_n) > c$ for all $n\in \mathbb{N}$ and $\chi(G_m \times G_n) \leq c$ for all $m \neq n$. These counterexamples to Hedetniemi's conjecture show that the Boolean lattice of exponential graphs with $K_c$ as a base is infinite for $c \geq 5$.
DOI : 10.14712/1213-7243.2023.003
Classification : 05C15
Keywords: categorical product; graph colouring; Hedetniemi's conjecture
@article{10_14712_1213_7243_2023_003,
     author = {Tardif, Claude},
     title = {Counterexamples to {Hedetniemi's} conjecture and infinite {Boolean} lattices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2022},
     doi = {10.14712/1213-7243.2023.003},
     mrnumber = {4542792},
     zbl = {07655803},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.003/}
}
TY  - JOUR
AU  - Tardif, Claude
TI  - Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 315
EP  - 327
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.003/
DO  - 10.14712/1213-7243.2023.003
LA  - en
ID  - 10_14712_1213_7243_2023_003
ER  - 
%0 Journal Article
%A Tardif, Claude
%T Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 315-327
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.003/
%R 10.14712/1213-7243.2023.003
%G en
%F 10_14712_1213_7243_2023_003
Tardif, Claude. Counterexamples to Hedetniemi's conjecture and infinite Boolean lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 315-327. doi : 10.14712/1213-7243.2023.003. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2023.003/

Cité par Sources :