Exponential separability is preserved by some products
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 385-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that exponential separability is an inverse invariant of closed maps with countably compact exponentially separable fibers. This implies that it is preserved by products with a scattered compact factor and in the products of sequential countably compact spaces. We also provide an example of a $\sigma$-compact crowded space in which all countable subspaces are scattered. If $X$ is a Lindelöf space and every $Y\subset X$ with $|Y|\leq 2^{\omega_1}$ is scattered, then $X$ is functionally countable; if every $Y\subset X$ with $|Y|\leq 2^{\mathfrak{c}} $ is scattered, then $X$ is exponentially separable. A Lindelöf $\Sigma$-space $X$ must be exponentially separable provided that every $Y\subset X$ with $|Y|\leq {\mathfrak{c}}$ is scattered. Under the Luzin axiom ($2^{\omega_1}>{\mathfrak{c}} $) we characterize weak exponential separability of $C_p(X,[0,1])$ for any metrizable space $X$. Our results solve several published open questions.
DOI : 10.14712/1213-7243.2022.021
Classification : 54C35, 54D65, 54G10, 54G12
Keywords: Lindelöf space; scattered space; $\sigma$-product; function space; $P$-space; exponentially separable space; product; functionally countable space; weakly exponentially separable space
@article{10_14712_1213_7243_2022_021,
     author = {Tkachuk, Vladimir V.},
     title = {Exponential separability is preserved by some products},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {385--395},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2022},
     doi = {10.14712/1213-7243.2022.021},
     mrnumber = {4542797},
     zbl = {07655808},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.021/}
}
TY  - JOUR
AU  - Tkachuk, Vladimir V.
TI  - Exponential separability is preserved by some products
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 385
EP  - 395
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.021/
DO  - 10.14712/1213-7243.2022.021
LA  - en
ID  - 10_14712_1213_7243_2022_021
ER  - 
%0 Journal Article
%A Tkachuk, Vladimir V.
%T Exponential separability is preserved by some products
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 385-395
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.021/
%R 10.14712/1213-7243.2022.021
%G en
%F 10_14712_1213_7243_2022_021
Tkachuk, Vladimir V. Exponential separability is preserved by some products. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 385-395. doi : 10.14712/1213-7243.2022.021. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.021/

Cité par Sources :