Self-small products of abelian groups
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 145-157.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ and $B$ be two abelian groups. The group $A$ is called $B$-small if the covariant functor ${\rm Hom}(A,-)$ commutes with all direct sums $B^{(\kappa)}$ and $A$ is self-small provided it is $A$-small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.
DOI : 10.14712/1213-7243.2022.020
Classification : 20K20, 20K21, 20K40
Keywords: self-small abelian group; slender group
@article{10_14712_1213_7243_2022_020,
     author = {Dvo\v{r}\'ak, Josef and \v{Z}emli\v{c}ka, Jan},
     title = {Self-small products of abelian groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {145--157},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2022},
     doi = {10.14712/1213-7243.2022.020},
     mrnumber = {4506129},
     zbl = {07613027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.020/}
}
TY  - JOUR
AU  - Dvořák, Josef
AU  - Žemlička, Jan
TI  - Self-small products of abelian groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 145
EP  - 157
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.020/
DO  - 10.14712/1213-7243.2022.020
LA  - en
ID  - 10_14712_1213_7243_2022_020
ER  - 
%0 Journal Article
%A Dvořák, Josef
%A Žemlička, Jan
%T Self-small products of abelian groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 145-157
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.020/
%R 10.14712/1213-7243.2022.020
%G en
%F 10_14712_1213_7243_2022_020
Dvořák, Josef; Žemlička, Jan. Self-small products of abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 145-157. doi : 10.14712/1213-7243.2022.020. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.020/

Cité par Sources :