On subcompactness and countable subcompactness of metrizable spaces in ZF
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 229-244.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space $\mathbf{X}=(X,T)$ is countably compact if and only if it is countably subcompact relative to $T$. (iii) For every metrizable space $\mathbf{X}=(X,T)$, the following are equivalent: \noindent(a) $\mathbf{X}$ is compact; \noindent(b) for every open filter $\mathcal{F}$ of $\mathbf{X}$, $\bigcap \{\overline{F}\colon F\in \mathcal{F}\}\neq \emptyset $; \noindent(c) $\mathbf{X}$ is subcompact relative to $T$. We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable space is completely metrizable, (b) every countably subcompact metrizable space is subcompact, (c) every completely metrizable space is subcompact, is relatively consistent with ZF. (v) AC if and only if for every family $\{\mathbf{X}_{i}\colon i\in I\}$ of metrizable subcompact spaces, for every family $\{\mathcal{B}_{i}\colon i\in I\}$ such that for every $i\in I$, $\mathcal{B}_{i}$ is a subcompact base for $\mathbf{X}_{i}$, the Tychonoff product $\mathbf{X}=\prod_{i\in I} \mathbf{X}_{i}$ is subcompact with respect to the standard base $\mathcal{B}$ of $\mathbf{X}$ generated by the family $\{\mathcal{B}_{i}\colon i\in I\}$.
DOI : 10.14712/1213-7243.2022.018
Classification : 03E25, 54D30, 54E35, 54E45, 54E50
Keywords: axiom of choice; compact; countably compact; subcompact; countably subcompact; lightly compact metric space
@article{10_14712_1213_7243_2022_018,
     author = {Keremedis, Kyriakos},
     title = {On subcompactness and countable  subcompactness of metrizable spaces in {ZF}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {229--244},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2022},
     doi = {10.14712/1213-7243.2022.018},
     mrnumber = {4506134},
     zbl = {07613032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.018/}
}
TY  - JOUR
AU  - Keremedis, Kyriakos
TI  - On subcompactness and countable  subcompactness of metrizable spaces in ZF
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 229
EP  - 244
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.018/
DO  - 10.14712/1213-7243.2022.018
LA  - en
ID  - 10_14712_1213_7243_2022_018
ER  - 
%0 Journal Article
%A Keremedis, Kyriakos
%T On subcompactness and countable  subcompactness of metrizable spaces in ZF
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 229-244
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.018/
%R 10.14712/1213-7243.2022.018
%G en
%F 10_14712_1213_7243_2022_018
Keremedis, Kyriakos. On subcompactness and countable  subcompactness of metrizable spaces in ZF. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 229-244. doi : 10.14712/1213-7243.2022.018. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.018/

Cité par Sources :