Totally Brown subsets of the Golomb space and the Kirch space
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 189-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A topological space $X$ is totally Brown if for each $n \in \mathbb{N} \setminus \{1\}$ and every nonempty open subsets $U_1,U_2,\ldots,U_n$ of $X$ we have ${\rm cl}_X(U_1) \cap {\rm cl}_X(U_2) \cap \cdots \cap {\rm cl}_X(U_n) \ne \emptyset$. Totally Brown spaces are connected. In this paper we consider the Golomb topology $\tau_G$ on the set $\mathbb{N}$ of natural numbers, as well as the Kirch topology $\tau_K$ on $\mathbb{N}$. Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in $(\mathbb{N},\tau_G)$. We also show that $(\mathbb{N},\tau_G)$ and $(\mathbb{N},\tau_K)$ are aposyndetic. Our results generalize properties obtained by A. M. Kirch in 1969 and by P. Szczuka in 2010, 2013 and 2015.
DOI : 10.14712/1213-7243.2022.017
Classification : 11A41, 11B05, 11B25, 54A05, 54D05, 54D10
Keywords: arithmetic progression; Golomb topology; Kirch topology; totally Brown space; totally separated space
@article{10_14712_1213_7243_2022_017,
     author = {Alberto-Dom{\'\i}nguez, Jos\'e del Carmen and Acosta, Gerardo and Delgadillo-Pi\~n\'on, Gerardo},
     title = {Totally {Brown} subsets of the {Golomb}  space and the {Kirch} space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {189--219},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2022},
     doi = {10.14712/1213-7243.2022.017},
     mrnumber = {4506132},
     zbl = {07613030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.017/}
}
TY  - JOUR
AU  - Alberto-Domínguez, José del Carmen
AU  - Acosta, Gerardo
AU  - Delgadillo-Piñón, Gerardo
TI  - Totally Brown subsets of the Golomb  space and the Kirch space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 189
EP  - 219
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.017/
DO  - 10.14712/1213-7243.2022.017
LA  - en
ID  - 10_14712_1213_7243_2022_017
ER  - 
%0 Journal Article
%A Alberto-Domínguez, José del Carmen
%A Acosta, Gerardo
%A Delgadillo-Piñón, Gerardo
%T Totally Brown subsets of the Golomb  space and the Kirch space
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 189-219
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.017/
%R 10.14712/1213-7243.2022.017
%G en
%F 10_14712_1213_7243_2022_017
Alberto-Domínguez, José del Carmen; Acosta, Gerardo; Delgadillo-Piñón, Gerardo. Totally Brown subsets of the Golomb  space and the Kirch space. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 189-219. doi : 10.14712/1213-7243.2022.017. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.017/

Cité par Sources :