On Beurling measure algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 169-187.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show how the measure theory of regular compacted-Borel measures defined on the $\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\mathcal M}(G,\omega)$, thus filling a gap in the literature.
DOI : 10.14712/1213-7243.2022.016
Classification : 22D15, 28C10, 43A05, 43A10, 43A20, 43A60
Keywords: weighted locally compact group; group algebra; measure algebra; Beurling algebra
@article{10_14712_1213_7243_2022_016,
     author = {Stokke, Ross},
     title = {On {Beurling} measure algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {169--187},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2022},
     doi = {10.14712/1213-7243.2022.016},
     mrnumber = {4506131},
     zbl = {07613029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.016/}
}
TY  - JOUR
AU  - Stokke, Ross
TI  - On Beurling measure algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 169
EP  - 187
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.016/
DO  - 10.14712/1213-7243.2022.016
LA  - en
ID  - 10_14712_1213_7243_2022_016
ER  - 
%0 Journal Article
%A Stokke, Ross
%T On Beurling measure algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 169-187
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.016/
%R 10.14712/1213-7243.2022.016
%G en
%F 10_14712_1213_7243_2022_016
Stokke, Ross. On Beurling measure algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 169-187. doi : 10.14712/1213-7243.2022.016. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.016/

Cité par Sources :