Selectors of discrete coarse spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 261-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a coarse space $(X, \mathcal{E})$ with the bornology $\mathcal B$ of bounded subsets, we extend the coarse structure $\mathcal E$ from $X\times X$ to the natural coarse structure on $(\mathcal B \backslash \lbrace \emptyset\rbrace) \times (\mathcal B \backslash \lbrace \emptyset\rbrace)$ and say that a macro-uniform mapping $f\colon (\mathcal B \backslash \lbrace \emptyset\rbrace)\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal{E})$ if $f(A)\in A$ for each $A\in \mathcal B\setminus \lbrace\emptyset\rbrace$ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal{E})$ admits a selector if and only if $(X, \mathcal{E})$ admits a 2-selector if and only if there exists a linear order ``$\leq$" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\leq b \}$ is a base for the bornology $\mathcal B$.
DOI : 10.14712/1213-7243.2022.012
Classification : 54C65
Keywords: bornology; coarse space; selector
@article{10_14712_1213_7243_2022_012,
     author = {Protasov, Igor},
     title = {Selectors of discrete coarse spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {261--267},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2022},
     doi = {10.14712/1213-7243.2022.012},
     mrnumber = {4506136},
     zbl = {07613034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.012/}
}
TY  - JOUR
AU  - Protasov, Igor
TI  - Selectors of discrete coarse spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 261
EP  - 267
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.012/
DO  - 10.14712/1213-7243.2022.012
LA  - en
ID  - 10_14712_1213_7243_2022_012
ER  - 
%0 Journal Article
%A Protasov, Igor
%T Selectors of discrete coarse spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 261-267
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.012/
%R 10.14712/1213-7243.2022.012
%G en
%F 10_14712_1213_7243_2022_012
Protasov, Igor. Selectors of discrete coarse spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 2, pp. 261-267. doi : 10.14712/1213-7243.2022.012. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.012/

Cité par Sources :