Linear operator identities in quasigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study identities of the form $$ L_{x_0} \varphi_1 \cdots \varphi_n R_{x_{n+1}} = R_{x_{n+1}} \varphi_{\sigma(1)} \cdots \varphi_{\sigma(n)} L_{x_0} $$ in quasigroups, where $n \geq 1$, $\sigma$ is a permutation of $\{1, \ldots, n\}$, and for each $i$, $\varphi_i$ is either $L_{x_i}$ or $R_{x_i}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma$ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty$.
DOI : 10.14712/1213-7243.2022.010
Classification : 05C78
Keywords: quasigroup; linear identity; associativity; commutativity
@article{10_14712_1213_7243_2022_010,
     author = {Akhtar, Reza},
     title = {Linear operator identities in quasigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2022},
     doi = {10.14712/1213-7243.2022.010},
     mrnumber = {4445733},
     zbl = {07584109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.010/}
}
TY  - JOUR
AU  - Akhtar, Reza
TI  - Linear operator identities in quasigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 1
EP  - 9
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.010/
DO  - 10.14712/1213-7243.2022.010
LA  - en
ID  - 10_14712_1213_7243_2022_010
ER  - 
%0 Journal Article
%A Akhtar, Reza
%T Linear operator identities in quasigroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 1-9
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.010/
%R 10.14712/1213-7243.2022.010
%G en
%F 10_14712_1213_7243_2022_010
Akhtar, Reza. Linear operator identities in quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 1, pp. 1-9. doi : 10.14712/1213-7243.2022.010. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.010/

Cité par Sources :