Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 295-306.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $K$ be a compact space and let $C(K)$ be the Banach lattice of real-valued continuous functions on $K$. We establish eleven conditions equivalent to the strong compactness of the order interval $[0,x]$ in $C(K)$, including the following ones: (i) $\{x>0\}$ consists of isolated points of $K$; (ii) $[0,x]$ is pointwise compact; (iii) $[0,x]$ is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on $[0,x]$; (v) the strong and weak topologies coincide on $[0,x]$. \noindent Moreover, the weak topology and that of pointwise convergence coincide on $[0,x]$ if and only if $\{x>0\}$ is scattered. Finally, the weak topology on $[0,x]$ is metrizable if and only if the topology of pointwise convergence on $[0,x]$ is such if and only if $\{x>0\}$ is countable.
DOI : 10.14712/1213-7243.2022.006
Classification : 46A40, 46B42, 46E05, 54C35, 54D30
Keywords: real linear lattice; order interval; locally solid; Banach lattice $C(K)$; strongly compact; weakly compact; pointwise compact; coincidence of topologies; metrizable; scattered; Čech--Stone compactification
@article{10_14712_1213_7243_2022_006,
     author = {Lipecki, Zbigniew},
     title = {Order intervals in $C(K)$. {Compactness,} coincidence of topologies, metrizability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {295--306},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2022},
     doi = {10.14712/1213-7243.2022.006},
     mrnumber = {4542790},
     zbl = {07655801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.006/}
}
TY  - JOUR
AU  - Lipecki, Zbigniew
TI  - Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2022
SP  - 295
EP  - 306
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.006/
DO  - 10.14712/1213-7243.2022.006
LA  - en
ID  - 10_14712_1213_7243_2022_006
ER  - 
%0 Journal Article
%A Lipecki, Zbigniew
%T Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 295-306
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.006/
%R 10.14712/1213-7243.2022.006
%G en
%F 10_14712_1213_7243_2022_006
Lipecki, Zbigniew. Order intervals in $C(K)$. Compactness, coincidence of topologies, metrizability. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 3, pp. 295-306. doi : 10.14712/1213-7243.2022.006. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.006/

Cité par Sources :