On power integral bases for certain pure number fields defined by $x^{18}-m$
Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 1, pp. 11-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $K={\mathbb Q}(\alpha)$ be a number field generated by a complex root $\alpha$ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv \mp 1 {\rm(mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm(mod }{ 4})$ or $m\equiv 1 {\rm(mod }{ 9})$, then the number field $K$ is not monogenic.
Let $K={\mathbb Q}(\alpha)$ be a number field generated by a complex root $\alpha$ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv \mp 1 {\rm(mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm(mod }{ 4})$ or $m\equiv 1 {\rm(mod }{ 9})$, then the number field $K$ is not monogenic.
DOI :
10.14712/1213-7243.2022.005
Classification :
11R04, 11R16, 11R21
Keywords: power integral base; theorem of Ore; prime ideal factorization
Keywords: power integral base; theorem of Ore; prime ideal factorization
@article{10_14712_1213_7243_2022_005,
author = {El Fadil, Lhoussain},
title = {On power integral bases for certain pure number fields defined by $x^{18}-m$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {11--19},
year = {2022},
volume = {63},
number = {1},
doi = {10.14712/1213-7243.2022.005},
mrnumber = {4445734},
zbl = {07584110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.005/}
}
TY - JOUR
AU - El Fadil, Lhoussain
TI - On power integral bases for certain pure number fields defined by $x^{18}-m$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
SP - 11
EP - 19
VL - 63
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.005/
DO - 10.14712/1213-7243.2022.005
LA - en
ID - 10_14712_1213_7243_2022_005
ER -
%0 Journal Article
%A El Fadil, Lhoussain
%T On power integral bases for certain pure number fields defined by $x^{18}-m$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2022
%P 11-19
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2022.005/
%R 10.14712/1213-7243.2022.005
%G en
%F 10_14712_1213_7243_2022_005
El Fadil, Lhoussain. On power integral bases for certain pure number fields defined by $x^{18}-m$. Commentationes Mathematicae Universitatis Carolinae, Tome 63 (2022) no. 1, pp. 11-19. doi: 10.14712/1213-7243.2022.005
Cité par Sources :