Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions
Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 4, pp. 445-455.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\to\mathbb{R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\leq f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega}_{\text{loc}}(G) $ such that $ f_1\leq f\leq f_2 $. This is a generalization of Ilmanen's lemma (which deals with linear modulus and functions on an open subset of $ \mathbb{R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in[2,\infty) $. We also prove a ``global" version of Ilmanen's lemma (where a $ C^{1,\omega} $ function is inserted between functions on an interval $ I\subset\mathbb{R} $).
DOI : 10.14712/1213-7243.2021.031
Classification : 26B25
Keywords: Ilmanen's lemma; $ C^{1, \omega} $ function; semiconvex function with general modulus
@article{10_14712_1213_7243_2021_031,
     author = {Kry\v{s}tof, V\'aclav},
     title = {Further generalized versions of {Ilmanen's} lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {445--455},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2021},
     doi = {10.14712/1213-7243.2021.031},
     mrnumber = {4405815},
     zbl = {07511572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.031/}
}
TY  - JOUR
AU  - Kryštof, Václav
TI  - Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2021
SP  - 445
EP  - 455
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.031/
DO  - 10.14712/1213-7243.2021.031
LA  - en
ID  - 10_14712_1213_7243_2021_031
ER  - 
%0 Journal Article
%A Kryštof, Václav
%T Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2021
%P 445-455
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.031/
%R 10.14712/1213-7243.2021.031
%G en
%F 10_14712_1213_7243_2021_031
Kryštof, Václav. Further generalized versions of Ilmanen's lemma on insertion of $C^{1,\omega}$ or $C^{1,\omega}_{\text{\rm loc}}$ functions. Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 4, pp. 445-455. doi : 10.14712/1213-7243.2021.031. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.031/

Cité par Sources :