On a class of variational problems with linear growth and radial symmetry
Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 3, pp. 325-345.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.
DOI : 10.14712/1213-7243.2021.022
Classification : 49J45, 49N60
Keywords: linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data
@article{10_14712_1213_7243_2021_022,
     author = {Bildhauer, Michael and Fuchs, Martin},
     title = {On a class of variational problems with linear growth and radial symmetry},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {325--345},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2021},
     doi = {10.14712/1213-7243.2021.022},
     mrnumber = {4331286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.022/}
}
TY  - JOUR
AU  - Bildhauer, Michael
AU  - Fuchs, Martin
TI  - On a class of variational problems with linear growth and radial symmetry
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2021
SP  - 325
EP  - 345
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.022/
DO  - 10.14712/1213-7243.2021.022
LA  - en
ID  - 10_14712_1213_7243_2021_022
ER  - 
%0 Journal Article
%A Bildhauer, Michael
%A Fuchs, Martin
%T On a class of variational problems with linear growth and radial symmetry
%J Commentationes Mathematicae Universitatis Carolinae
%D 2021
%P 325-345
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.022/
%R 10.14712/1213-7243.2021.022
%G en
%F 10_14712_1213_7243_2021_022
Bildhauer, Michael; Fuchs, Martin. On a class of variational problems with linear growth and radial symmetry. Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 3, pp. 325-345. doi : 10.14712/1213-7243.2021.022. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.022/

Cité par Sources :