Classification of quasigroups according to directions of translations II
Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 3, pp. 309-323.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In each quasigroup $Q$ there are defined six types of translations: the left, right and middle translations and their inverses. Two translations may coincide as permutations of $Q$, and yet be different when considered upon the web of the quasigroup. We shall call each of the translation types a direction and will associate it with one of the elements $\iota, l, r, s, ls $ and $rs$, i.e., the elements of a symmetric group $S_3$. Properties of the directions are considered in part 1 of "Classification of quasigroups according to directions of translations I" by F. M. Sokhatsky and A. V. Lutsenko. Let ${^{\sigma}\mathcal{M}}$ denote the set of all translations of a direction $\sigma\in S_{3}$. The conditions ${^{\sigma}\mathcal{M}}={^{\kappa}\mathcal{M}}$, where $\sigma,\kappa\in S_{3}$ and $\sigma\ne\kappa$, define nine quasigroup varieties. Four of them are well known: $LIP$, $RIP$, $MIP$ and $CIP$. The remaining five quasigroup varieties are relatively new because they are left and right inverses of $ CIP$ variety and generalization of commutative, left and right symmetric quasigroups.
DOI : 10.14712/1213-7243.2021.021
Classification : 20N05
Keywords: quasigroup; parastrophe; parastrophic symmetry; parastrophic orbit; translation; direction; matrix quasigroup
@article{10_14712_1213_7243_2021_021,
     author = {Sokhatsky, Fedir and Lutsenko, Alla},
     title = {Classification of quasigroups according to directions of translations {II}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {309--323},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2021},
     doi = {10.14712/1213-7243.2021.021},
     mrnumber = {4331285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.021/}
}
TY  - JOUR
AU  - Sokhatsky, Fedir
AU  - Lutsenko, Alla
TI  - Classification of quasigroups according to directions of translations II
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2021
SP  - 309
EP  - 323
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.021/
DO  - 10.14712/1213-7243.2021.021
LA  - en
ID  - 10_14712_1213_7243_2021_021
ER  - 
%0 Journal Article
%A Sokhatsky, Fedir
%A Lutsenko, Alla
%T Classification of quasigroups according to directions of translations II
%J Commentationes Mathematicae Universitatis Carolinae
%D 2021
%P 309-323
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.021/
%R 10.14712/1213-7243.2021.021
%G en
%F 10_14712_1213_7243_2021_021
Sokhatsky, Fedir; Lutsenko, Alla. Classification of quasigroups according to directions of translations II. Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 3, pp. 309-323. doi : 10.14712/1213-7243.2021.021. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.021/

Cité par Sources :