On atomic ideals in some factor rings of $C(X,\Bbb Z)$
Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 2, pp. 259-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\Bbb{Z}^X/ \Bbb{Z}^{(X)}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ have atomic ideals.
A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\Bbb{Z}^X/ \Bbb{Z}^{(X)}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ have atomic ideals.
DOI : 10.14712/1213-7243.2021.013
Classification : 54C40
Keywords: $P$-space; rings of integer-valued continuous functions; functionally countable subalgebra; atomic ideal; socle
@article{10_14712_1213_7243_2021_013,
     author = {Olfati, Alireza},
     title = {On atomic ideals in some factor rings of $C(X,\Bbb Z)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {259--263},
     year = {2021},
     volume = {62},
     number = {2},
     doi = {10.14712/1213-7243.2021.013},
     mrnumber = {4303551},
     zbl = {07396222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.013/}
}
TY  - JOUR
AU  - Olfati, Alireza
TI  - On atomic ideals in some factor rings of $C(X,\Bbb Z)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2021
SP  - 259
EP  - 263
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.013/
DO  - 10.14712/1213-7243.2021.013
LA  - en
ID  - 10_14712_1213_7243_2021_013
ER  - 
%0 Journal Article
%A Olfati, Alireza
%T On atomic ideals in some factor rings of $C(X,\Bbb Z)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2021
%P 259-263
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.013/
%R 10.14712/1213-7243.2021.013
%G en
%F 10_14712_1213_7243_2021_013
Olfati, Alireza. On atomic ideals in some factor rings of $C(X,\Bbb Z)$. Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 2, pp. 259-263. doi: 10.14712/1213-7243.2021.013

Cité par Sources :