Coarse homotopy on metric spaces and their corona
Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 2, pp. 243-257 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.
This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.
DOI : 10.14712/1213-7243.2021.011
Classification : 51F99, 54H99
Keywords: Higson corona; coarse geometry
@article{10_14712_1213_7243_2021_011,
     author = {Hartmann, Elisa},
     title = {Coarse homotopy on metric spaces and their corona},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {243--257},
     year = {2021},
     volume = {62},
     number = {2},
     doi = {10.14712/1213-7243.2021.011},
     mrnumber = {4303580},
     zbl = {07396221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.011/}
}
TY  - JOUR
AU  - Hartmann, Elisa
TI  - Coarse homotopy on metric spaces and their corona
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2021
SP  - 243
EP  - 257
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.011/
DO  - 10.14712/1213-7243.2021.011
LA  - en
ID  - 10_14712_1213_7243_2021_011
ER  - 
%0 Journal Article
%A Hartmann, Elisa
%T Coarse homotopy on metric spaces and their corona
%J Commentationes Mathematicae Universitatis Carolinae
%D 2021
%P 243-257
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2021.011/
%R 10.14712/1213-7243.2021.011
%G en
%F 10_14712_1213_7243_2021_011
Hartmann, Elisa. Coarse homotopy on metric spaces and their corona. Commentationes Mathematicae Universitatis Carolinae, Tome 62 (2021) no. 2, pp. 243-257. doi: 10.14712/1213-7243.2021.011

Cité par Sources :