On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$
Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 4, pp. 547-551.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^5$ are centrally nilpotent of class at most two.
DOI : 10.14712/1213-7243.2020.034
Classification : 20D10, 20N05
Keywords: loop; elementary abelian group; inner mapping group
@article{10_14712_1213_7243_2020_034,
     author = {Niemenmaa, Markku},
     title = {On finite commutative {IP-loops} with elementary abelian inner mapping groups of order $p^5$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {547--551},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2020},
     doi = {10.14712/1213-7243.2020.034},
     mrnumber = {4230959},
     zbl = {07332728},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.034/}
}
TY  - JOUR
AU  - Niemenmaa, Markku
TI  - On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2020
SP  - 547
EP  - 551
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.034/
DO  - 10.14712/1213-7243.2020.034
LA  - en
ID  - 10_14712_1213_7243_2020_034
ER  - 
%0 Journal Article
%A Niemenmaa, Markku
%T On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2020
%P 547-551
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.034/
%R 10.14712/1213-7243.2020.034
%G en
%F 10_14712_1213_7243_2020_034
Niemenmaa, Markku. On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$. Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 4, pp. 547-551. doi : 10.14712/1213-7243.2020.034. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.034/

Cité par Sources :