Measure-geometric Laplacians for partially atomic measures
Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 3, pp. 313-335.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M.\,G. Kreĭn, given an atomless Borel probability measure $\eta$ supported on a compact subset of $\mathbb R$ U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator $\nabla_{\eta}$ and a second order differential operator $\Delta_{\eta}$, with respect to $\eta$. We generalize this approach to measures of the form $\eta := \nu + \delta$, where $\nu$ is non-atomic and $\delta$ is finitely supported. We determine analytic properties of $\nabla_{\eta}$ and $\Delta_{\eta}$ and show that $\Delta_{\eta}$ is a densely defined, unbounded, linear, self-adjoint operator with compact resolvent. Moreover, we give a systematic way to calculate the eigenvalues and eigenfunctions of $\Delta_{\eta}$. For two leading examples, we determine the eigenvalues and the eigenfunctions, as well as the asymptotic growth rates of the eigenvalue counting function.
DOI : 10.14712/1213-7243.2020.026
Classification : 35P20, 42B35, 47G30
Keywords: Kreĭn--Feller operator; spectral asymptotics; harmonic analysis
@article{10_14712_1213_7243_2020_026,
     author = {Kesseb\"ohmer, Marc and Samuel, Tony and Weyer, Hendrik},
     title = {Measure-geometric {Laplacians} for partially atomic measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {313--335},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2020},
     doi = {10.14712/1213-7243.2020.026},
     mrnumber = {4186110},
     zbl = {07286007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.026/}
}
TY  - JOUR
AU  - Kesseböhmer, Marc
AU  - Samuel, Tony
AU  - Weyer, Hendrik
TI  - Measure-geometric Laplacians for partially atomic measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2020
SP  - 313
EP  - 335
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.026/
DO  - 10.14712/1213-7243.2020.026
LA  - en
ID  - 10_14712_1213_7243_2020_026
ER  - 
%0 Journal Article
%A Kesseböhmer, Marc
%A Samuel, Tony
%A Weyer, Hendrik
%T Measure-geometric Laplacians for partially atomic measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 2020
%P 313-335
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.026/
%R 10.14712/1213-7243.2020.026
%G en
%F 10_14712_1213_7243_2020_026
Kesseböhmer, Marc; Samuel, Tony; Weyer, Hendrik. Measure-geometric Laplacians for partially atomic measures. Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 3, pp. 313-335. doi : 10.14712/1213-7243.2020.026. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.026/

Cité par Sources :