Asymptotic properties of a $\varphi$-Laplacian and Rayleigh quotient
Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 3, pp. 345-362.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider the $\varphi\,$-Laplacian problem with Dirichlet boundary condition, $$ -{\rm div}\Big(\varphi(|\nabla u|) \frac{\nabla u}{|\nabla u |}\Big)=\lambda g(\cdot) \varphi(u) \qquad\text{in } \Omega, \lambda\in{\mathbb{R}} \text{ and } u\vert_{\partial\Omega}=0. $$ The term $\varphi$ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^{\infty}(\Omega)$ and $\Omega\subseteq\mathbb{R}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi$-Laplacian. It turns out that if, in addition, a suitable $\Delta_2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.
DOI : 10.14712/1213-7243.2020.020
Classification : 35J60, 35P20, 35P30
Keywords: Orlicz--Sobolev space; $\varphi$-Laplacian; eigenvalue; Rayleigh quotient
@article{10_14712_1213_7243_2020_020,
     author = {Arriagada, Waldo and Huentutripay, Jorge},
     title = {Asymptotic properties of a $\varphi${-Laplacian} and {Rayleigh} quotient},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {345--362},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2020},
     doi = {10.14712/1213-7243.2020.020},
     mrnumber = {4186112},
     zbl = {07286009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.020/}
}
TY  - JOUR
AU  - Arriagada, Waldo
AU  - Huentutripay, Jorge
TI  - Asymptotic properties of a $\varphi$-Laplacian and Rayleigh quotient
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2020
SP  - 345
EP  - 362
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.020/
DO  - 10.14712/1213-7243.2020.020
LA  - en
ID  - 10_14712_1213_7243_2020_020
ER  - 
%0 Journal Article
%A Arriagada, Waldo
%A Huentutripay, Jorge
%T Asymptotic properties of a $\varphi$-Laplacian and Rayleigh quotient
%J Commentationes Mathematicae Universitatis Carolinae
%D 2020
%P 345-362
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.020/
%R 10.14712/1213-7243.2020.020
%G en
%F 10_14712_1213_7243_2020_020
Arriagada, Waldo; Huentutripay, Jorge. Asymptotic properties of a $\varphi$-Laplacian and Rayleigh quotient. Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 3, pp. 345-362. doi : 10.14712/1213-7243.2020.020. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.020/

Cité par Sources :