On congruence permutable $G$-sets
Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 2, pp. 139-145.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An algebraic structure is said to be congruence permutable if its arbitrary congruences $\alpha$ and $\beta$ satisfy the equation $\alpha \circ \beta =\beta \circ \alpha$, where $\circ$ denotes the usual composition of binary relations. To an arbitrary $G$-set $X$ satisfying $G\cap X=\emptyset$, we assign a semigroup $(G,X,0)$ on the base set $G\cup X\cup \{ 0\}$ containing a zero element $0\notin G\cup X$, and examine the connection between the congruence permutability of the $G$-set $X$ and the semigroup $(G,X,0)$.
DOI : 10.14712/1213-7243.2020.019
Classification : 20E15, 20M05
Keywords: $G$-set; congruence permutable algebras; semigroup
@article{10_14712_1213_7243_2020_019,
     author = {Nagy, Attila},
     title = {On congruence permutable $G$-sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {139--145},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2020},
     doi = {10.14712/1213-7243.2020.019},
     mrnumber = {4143700},
     zbl = {07285996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.019/}
}
TY  - JOUR
AU  - Nagy, Attila
TI  - On congruence permutable $G$-sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2020
SP  - 139
EP  - 145
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.019/
DO  - 10.14712/1213-7243.2020.019
LA  - en
ID  - 10_14712_1213_7243_2020_019
ER  - 
%0 Journal Article
%A Nagy, Attila
%T On congruence permutable $G$-sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2020
%P 139-145
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.019/
%R 10.14712/1213-7243.2020.019
%G en
%F 10_14712_1213_7243_2020_019
Nagy, Attila. On congruence permutable $G$-sets. Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 2, pp. 139-145. doi : 10.14712/1213-7243.2020.019. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.019/

Cité par Sources :