Vector product and composition algebras in braided monoidal additive categories
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 4, pp. 581-604.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This is an account of some work of Markus Rost and his students Dominik Boos and Susanne Maurer. It concerns the possible dimensions for composition (also called Hurwitz) algebras. We adapt the work to the braided monoidal setting.
DOI : 10.14712/1213-7243.2019.024
Classification : 11E20, 15A03, 17A75, 18D10
Keywords: string diagram; vector product; bilinear form; braiding; monoidal dual
@article{10_14712_1213_7243_2019_024,
     author = {Street, Ross},
     title = {Vector product and composition algebras in braided monoidal additive categories},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {581--604},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2019},
     doi = {10.14712/1213-7243.2019.024},
     mrnumber = {4061364},
     zbl = {07177891},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.024/}
}
TY  - JOUR
AU  - Street, Ross
TI  - Vector product and composition algebras in braided monoidal additive categories
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 581
EP  - 604
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.024/
DO  - 10.14712/1213-7243.2019.024
LA  - en
ID  - 10_14712_1213_7243_2019_024
ER  - 
%0 Journal Article
%A Street, Ross
%T Vector product and composition algebras in braided monoidal additive categories
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 581-604
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.024/
%R 10.14712/1213-7243.2019.024
%G en
%F 10_14712_1213_7243_2019_024
Street, Ross. Vector product and composition algebras in braided monoidal additive categories. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 4, pp. 581-604. doi : 10.14712/1213-7243.2019.024. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.024/

Cité par Sources :