Countable compactness of lexicographic products of GO-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 421-439.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization about lexicographic products, we see: \begin{itemize} \item[$\circ$] the lexicographic product $X^2$ of a countably compact GO-space $X$ need not be countably compact, \item[$\circ$] $\omega_1^2$, $\omega_1\times \omega$, $(\omega+1)\times (\omega_1+1)\times\omega_1\times \omega$, $\omega_1\times \omega\times \omega_1$, $\omega_1\times \omega\times\omega_1\times \omega\times \cdots $, $\omega_1\times \omega^\omega$, $\omega_1\times \omega^\omega\times (\omega+1)$, $\omega_1^\omega$, $\omega_1^\omega\times (\omega_1+1)$ and $\prod_{n\in \omega}\omega_{n+1}$ are countably compact, \item[$\circ$] $\omega\times \omega_1$, $(\omega+1)\times (\omega_1+1)\times\omega\times \omega_1$, $\omega\times \omega_1\times\omega\times \omega_1\times \cdots $, $\omega\times \omega_1^\omega$, $\omega_1\times \omega^\omega\times \omega_1$, $\omega_1^\omega\times \omega$, $\prod_{n\in \omega}\omega_{n}$ and $\prod_{n\leq \omega}\omega_{n+1}$ are not countably compact, \item[$\circ$] $[0,1)_\mathbb R\times \omega_1$, where $[0,1)_\mathbb R$ denotes the half open interval in the real line $\mathbb R$, is not countably compact, \item[$\circ$] $\omega_1\times [0,1)_\mathbb R$ is countably compact, \item[$\circ$] both $\mathbb S\times \omega_1$ and $\omega_1\times \mathbb S$ are not countably compact, \item[$\circ$] $\omega_1\times (-\omega_1)$ is not countably compact, where for a GO-space $X=\langle X,$, $-X$ denotes the GO-space $\langle X,>_X,\tau_X\rangle$. \end{itemize}
DOI : 10.14712/1213-7243.2019.020
Classification : 54B05, 54B10, 54C05, 54F05
Keywords: lexicographic product; GO-space; LOTS; countably compact product
@article{10_14712_1213_7243_2019_020,
     author = {Kemoto, Nobuyuki},
     title = {Countable compactness of lexicographic products of {GO-spaces}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {421--439},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2019},
     doi = {10.14712/1213-7243.2019.020},
     mrnumber = {4034442},
     zbl = {07144904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.020/}
}
TY  - JOUR
AU  - Kemoto, Nobuyuki
TI  - Countable compactness of lexicographic products of GO-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 421
EP  - 439
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.020/
DO  - 10.14712/1213-7243.2019.020
LA  - en
ID  - 10_14712_1213_7243_2019_020
ER  - 
%0 Journal Article
%A Kemoto, Nobuyuki
%T Countable compactness of lexicographic products of GO-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 421-439
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.020/
%R 10.14712/1213-7243.2019.020
%G en
%F 10_14712_1213_7243_2019_020
Kemoto, Nobuyuki. Countable compactness of lexicographic products of GO-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 421-439. doi : 10.14712/1213-7243.2019.020. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.020/

Cité par Sources :