On the integral representation of finely superharmonic functions
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 323-350.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal{P}$-harmonic space $\Omega$ with countable base of open subsets and satisfying the axiom $D$. When $\Omega$ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal{S(U)}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.
DOI : 10.14712/1213-7243.2019.019
Classification : 31C35, 31C40, 31D05
Keywords: finely harmonic function; finely superharmonic function; fine potential; fine Green kernel; integral representation; Martin boundary; fine Riesz-Martin kernel
@article{10_14712_1213_7243_2019_019,
     author = {Aslimani, Abderrahim and El Ghazi, Imad and El Kadiri, Mohamed},
     title = {On the integral representation of finely superharmonic functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {323--350},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2019},
     doi = {10.14712/1213-7243.2019.019},
     mrnumber = {4034436},
     zbl = {07144898},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.019/}
}
TY  - JOUR
AU  - Aslimani, Abderrahim
AU  - El Ghazi, Imad
AU  - El Kadiri, Mohamed
TI  - On the integral representation of finely superharmonic functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 323
EP  - 350
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.019/
DO  - 10.14712/1213-7243.2019.019
LA  - en
ID  - 10_14712_1213_7243_2019_019
ER  - 
%0 Journal Article
%A Aslimani, Abderrahim
%A El Ghazi, Imad
%A El Kadiri, Mohamed
%T On the integral representation of finely superharmonic functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 323-350
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.019/
%R 10.14712/1213-7243.2019.019
%G en
%F 10_14712_1213_7243_2019_019
Aslimani, Abderrahim; El Ghazi, Imad; El Kadiri, Mohamed. On the integral representation of finely superharmonic functions. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 323-350. doi : 10.14712/1213-7243.2019.019. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.019/

Cité par Sources :