Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_14712_1213_7243_2019_016, author = {Afrouzi, Ghasem A. and Shokooh, Shaeid and Chung, Nguyen T.}, title = {Infinitely many weak solutions for a non-homogeneous {Neumann} problem in {Orlicz--Sobolev} spaces}, journal = {Commentationes Mathematicae Universitatis Carolinae}, pages = {361--378}, publisher = {mathdoc}, volume = {60}, number = {3}, year = {2019}, doi = {10.14712/1213-7243.2019.016}, mrnumber = {4034438}, zbl = {07144900}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.016/} }
TY - JOUR AU - Afrouzi, Ghasem A. AU - Shokooh, Shaeid AU - Chung, Nguyen T. TI - Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2019 SP - 361 EP - 378 VL - 60 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.016/ DO - 10.14712/1213-7243.2019.016 LA - en ID - 10_14712_1213_7243_2019_016 ER -
%0 Journal Article %A Afrouzi, Ghasem A. %A Shokooh, Shaeid %A Chung, Nguyen T. %T Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2019 %P 361-378 %V 60 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.016/ %R 10.14712/1213-7243.2019.016 %G en %F 10_14712_1213_7243_2019_016
Afrouzi, Ghasem A.; Shokooh, Shaeid; Chung, Nguyen T. Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 361-378. doi : 10.14712/1213-7243.2019.016. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.016/
Cité par Sources :