Chern rank of complex bundle
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 401-413.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Motivated by the work of A.\,C. Naolekar and A.\,S. Thakur (2014) we introduce notions of upper chern rank and even cup length of a finite connected CW-complex and prove that upper chern rank is a homotopy invariant. It turns out that determination of upper chern rank of a space $X$ sometimes helps to detect whether a generator of the top cohomology group can be realized as Euler class for some real (orientable) vector bundle over $X$ or not. For a closed connected $d$-dimensional complex manifold we obtain an upper bound of its even cup length. For a finite connected even dimensional CW-complex with its upper chern rank equal to its dimension, we provide a method of computing its even cup length. Finally, we compute upper chern rank of many interesting spaces.
DOI : 10.14712/1213-7243.2019.015
Classification : 57R20
Keywords: Chern class; characteristic rank; cup length; chern rank
@article{10_14712_1213_7243_2019_015,
     author = {Banerjee, Bikram},
     title = {Chern rank of complex bundle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {401--413},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2019},
     doi = {10.14712/1213-7243.2019.015},
     mrnumber = {4034440},
     zbl = {07144902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.015/}
}
TY  - JOUR
AU  - Banerjee, Bikram
TI  - Chern rank of complex bundle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 401
EP  - 413
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.015/
DO  - 10.14712/1213-7243.2019.015
LA  - en
ID  - 10_14712_1213_7243_2019_015
ER  - 
%0 Journal Article
%A Banerjee, Bikram
%T Chern rank of complex bundle
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 401-413
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.015/
%R 10.14712/1213-7243.2019.015
%G en
%F 10_14712_1213_7243_2019_015
Banerjee, Bikram. Chern rank of complex bundle. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 401-413. doi : 10.14712/1213-7243.2019.015. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.015/

Cité par Sources :