The reciprocal Dunford--Pettis property of order $p$ in projective tensor products
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 351-360.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate whether the projective tensor product of two Banach spaces $X$ and $Y$ has the reciprocal Dunford--Pettis property of order $p$, $1\le\allowbreak p\infty$, when $X$ and $Y$ have the respective property.
DOI : 10.14712/1213-7243.2019.014
Classification : 28B05, 46B20, 46B28
Keywords: reciprocal Dunford--Pettis property; spaces of compact operators
@article{10_14712_1213_7243_2019_014,
     author = {Ghenciu, Ioana},
     title = {The reciprocal {Dunford--Pettis} property of order $p$ in projective tensor products},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {351--360},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2019},
     doi = {10.14712/1213-7243.2019.014},
     mrnumber = {4034437},
     zbl = {07144899},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.014/}
}
TY  - JOUR
AU  - Ghenciu, Ioana
TI  - The reciprocal Dunford--Pettis property of order $p$ in projective tensor products
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 351
EP  - 360
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.014/
DO  - 10.14712/1213-7243.2019.014
LA  - en
ID  - 10_14712_1213_7243_2019_014
ER  - 
%0 Journal Article
%A Ghenciu, Ioana
%T The reciprocal Dunford--Pettis property of order $p$ in projective tensor products
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 351-360
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.014/
%R 10.14712/1213-7243.2019.014
%G en
%F 10_14712_1213_7243_2019_014
Ghenciu, Ioana. The reciprocal Dunford--Pettis property of order $p$ in projective tensor products. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 351-360. doi : 10.14712/1213-7243.2019.014. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.014/

Cité par Sources :