On commutative rings whose maximal ideals are idempotent
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 313-322.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that for a commutative ring $R$, every noetherian (artinian) $R$-module is quasi-injective if and only if every noetherian (artinian) $R$-module is quasi-projective if and only if the class of noetherian (artinian) $R$-modules is socle-fine if and only if the class of noetherian (artinian) $R$-modules is radical-fine if and only if every maximal ideal of $R$ is idempotent.
DOI : 10.14712/1213-7243.2019.012
Classification : 13C13, 13E05, 13E10, 13E99
Keywords: artinian module; modules of finite length; noetherian module; quasi-injective module; quasi-projective module; radical-fine class of modules; socle-fine class of modules
@article{10_14712_1213_7243_2019_012,
     author = {Kourki, Farid and Tribak, Rachid},
     title = {On commutative rings whose maximal ideals are idempotent},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {313--322},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2019},
     doi = {10.14712/1213-7243.2019.012},
     mrnumber = {4034435},
     zbl = {07144897},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.012/}
}
TY  - JOUR
AU  - Kourki, Farid
AU  - Tribak, Rachid
TI  - On commutative rings whose maximal ideals are idempotent
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 313
EP  - 322
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.012/
DO  - 10.14712/1213-7243.2019.012
LA  - en
ID  - 10_14712_1213_7243_2019_012
ER  - 
%0 Journal Article
%A Kourki, Farid
%A Tribak, Rachid
%T On commutative rings whose maximal ideals are idempotent
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 313-322
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.012/
%R 10.14712/1213-7243.2019.012
%G en
%F 10_14712_1213_7243_2019_012
Kourki, Farid; Tribak, Rachid. On commutative rings whose maximal ideals are idempotent. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 3, pp. 313-322. doi : 10.14712/1213-7243.2019.012. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.012/

Cité par Sources :