A $Q$-linear automorphism of the reals with non-measurable graph
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 2, pp. 209-210.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This note contains a proof of the existence of a one-to-one function $\Theta $ of $\,\mathbb{R}\,$ onto itself with the following properties: $\Theta $ is a rational-linear automorphism of $\mathbb{R}$, and the graph of $\Theta $ is a non-measurable subset of the plane.
DOI : 10.14712/1213-7243.2019.004
Classification : 26A30, 28A05, 28A20
Keywords: non-measurable functions; rational automorphism
@article{10_14712_1213_7243_2019_004,
     author = {Scheinberg, Stephen},
     title = {A $Q$-linear automorphism  of the reals with non-measurable graph},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {209--210},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2019},
     doi = {10.14712/1213-7243.2019.004},
     mrnumber = {3982468},
     zbl = {07144889},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.004/}
}
TY  - JOUR
AU  - Scheinberg, Stephen
TI  - A $Q$-linear automorphism  of the reals with non-measurable graph
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 209
EP  - 210
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.004/
DO  - 10.14712/1213-7243.2019.004
LA  - en
ID  - 10_14712_1213_7243_2019_004
ER  - 
%0 Journal Article
%A Scheinberg, Stephen
%T A $Q$-linear automorphism  of the reals with non-measurable graph
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 209-210
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.004/
%R 10.14712/1213-7243.2019.004
%G en
%F 10_14712_1213_7243_2019_004
Scheinberg, Stephen. A $Q$-linear automorphism  of the reals with non-measurable graph. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 2, pp. 209-210. doi : 10.14712/1213-7243.2019.004. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2019.004/

Cité par Sources :