Strong measure zero and meager-additive sets through the prism of fractal measures
Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 1, pp. 131-155.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We develop a theory of sharp measure zero sets that parallels Borel's strong measure zero, and prove a theorem analogous to Galvin--Mycielski--Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^{\omega}$ is meager-additive if and only if it is $\mathcal E$-additive; if $f\colon 2^{\omega}\to 2^{\omega}$ is continuous and $X$ is meager-additive, then so is $f(X)$.
DOI : 10.14712/1213-7243.2015.277
Classification : 03E05, 03E20, 28A78
Keywords: meager-additive; $\mathcal E$-additive; strong measure zero; sharp measure zero; Hausdorff dimension; Hausdorff measure
@article{10_14712_1213_7243_2015_277,
     author = {Zindulka, Ond\v{r}ej},
     title = {Strong measure zero and meager-additive sets through the prism of fractal measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {131--155},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2019},
     doi = {10.14712/1213-7243.2015.277},
     mrnumber = {3946667},
     zbl = {07088828},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.277/}
}
TY  - JOUR
AU  - Zindulka, Ondřej
TI  - Strong measure zero and meager-additive sets through the prism of fractal measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2019
SP  - 131
EP  - 155
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.277/
DO  - 10.14712/1213-7243.2015.277
LA  - en
ID  - 10_14712_1213_7243_2015_277
ER  - 
%0 Journal Article
%A Zindulka, Ondřej
%T Strong measure zero and meager-additive sets through the prism of fractal measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 2019
%P 131-155
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.277/
%R 10.14712/1213-7243.2015.277
%G en
%F 10_14712_1213_7243_2015_277
Zindulka, Ondřej. Strong measure zero and meager-additive sets through the prism of fractal measures. Commentationes Mathematicae Universitatis Carolinae, Tome 60 (2019) no. 1, pp. 131-155. doi : 10.14712/1213-7243.2015.277. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.277/

Cité par Sources :