Finitely-additive, countably-additive and internal probability measures
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 467-485.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure $P$ on a separable metric space is a limit of a sequence of countably-additive Borel probability measures $\{P_n\}_{n\in \mathbb{N}}$ in the sense that $\int f \,{\rm d} P=\lim_{n\to \infty} \int f\, {\rm d} P_n$ for all bounded uniformly continuous real-valued function $f$ if and only if the space is totally bounded.
DOI : 10.14712/1213-7243.2015.270
Classification : 03H05, 26E35, 28E05, 60B10
Keywords: nonstandard model in mathematics; nonstandard analysis; nonstandard measure theory; convergence of probability measures
@article{10_14712_1213_7243_2015_270,
     author = {Duanmu, Haosui and Weiss, William},
     title = {Finitely-additive, countably-additive and internal probability measures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {467--485},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2018},
     doi = {10.14712/1213-7243.2015.270},
     mrnumber = {3914713},
     zbl = {06997363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.270/}
}
TY  - JOUR
AU  - Duanmu, Haosui
AU  - Weiss, William
TI  - Finitely-additive, countably-additive and internal probability measures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 467
EP  - 485
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.270/
DO  - 10.14712/1213-7243.2015.270
LA  - en
ID  - 10_14712_1213_7243_2015_270
ER  - 
%0 Journal Article
%A Duanmu, Haosui
%A Weiss, William
%T Finitely-additive, countably-additive and internal probability measures
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 467-485
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.270/
%R 10.14712/1213-7243.2015.270
%G en
%F 10_14712_1213_7243_2015_270
Duanmu, Haosui; Weiss, William. Finitely-additive, countably-additive and internal probability measures. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 467-485. doi : 10.14712/1213-7243.2015.270. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.270/

Cité par Sources :