Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 451-466.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of $\mathbb N^*$. One especially important application, due to Veličković, was to the existence of nontrivial involutions on $\mathbb N^*$. A tie-point of $\mathbb N^*$ has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost clopen set to be the closure of one of the proper relatively clopen subsets of the complement of a tie-point. We explore asymmetries of almost clopen subsets of $\mathbb N^*$ in the sense of how may an almost clopen set differ from its natural complementary almost clopen set.
DOI : 10.14712/1213-7243.2015.268
Classification : 03E15, 54D80
Keywords: ultrafilter; cardinal invariants of continuum
@article{10_14712_1213_7243_2015_268,
     author = {Dow, Alan and Shelah, Saharon},
     title = {Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {451--466},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2018},
     doi = {10.14712/1213-7243.2015.268},
     mrnumber = {3914712},
     zbl = {06997362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.268/}
}
TY  - JOUR
AU  - Dow, Alan
AU  - Shelah, Saharon
TI  - Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 451
EP  - 466
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.268/
DO  - 10.14712/1213-7243.2015.268
LA  - en
ID  - 10_14712_1213_7243_2015_268
ER  - 
%0 Journal Article
%A Dow, Alan
%A Shelah, Saharon
%T Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 451-466
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.268/
%R 10.14712/1213-7243.2015.268
%G en
%F 10_14712_1213_7243_2015_268
Dow, Alan; Shelah, Saharon. Asymmetric tie-points and almost clopen subsets of $\mathbb {N}^*$. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 451-466. doi : 10.14712/1213-7243.2015.268. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.268/

Cité par Sources :