The nonexistence of universal metric flows
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 487-493.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\to X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega$-limit sets, answering a question by Will Brian.
DOI : 10.14712/1213-7243.2015.264
Classification : 37B05, 37B10, 54H20
Keywords: universal metric dynamical system; minimal dynamical system
@article{10_14712_1213_7243_2015_264,
     author = {Geschke, Stefan},
     title = {The nonexistence of universal metric flows},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {487--493},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2018},
     doi = {10.14712/1213-7243.2015.264},
     mrnumber = {3914714},
     zbl = {06997364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.264/}
}
TY  - JOUR
AU  - Geschke, Stefan
TI  - The nonexistence of universal metric flows
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 487
EP  - 493
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.264/
DO  - 10.14712/1213-7243.2015.264
LA  - en
ID  - 10_14712_1213_7243_2015_264
ER  - 
%0 Journal Article
%A Geschke, Stefan
%T The nonexistence of universal metric flows
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 487-493
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.264/
%R 10.14712/1213-7243.2015.264
%G en
%F 10_14712_1213_7243_2015_264
Geschke, Stefan. The nonexistence of universal metric flows. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 487-493. doi : 10.14712/1213-7243.2015.264. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.264/

Cité par Sources :