Convergence and submeasures in Boolean algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 503-511.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.
DOI : 10.14712/1213-7243.2015.262
Classification : 03G05, 28A60
Keywords: Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology
@article{10_14712_1213_7243_2015_262,
     author = {Jech, Thomas},
     title = {Convergence and submeasures  in {Boolean} algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {503--511},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2018},
     doi = {10.14712/1213-7243.2015.262},
     mrnumber = {3914716},
     zbl = {06997366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.262/}
}
TY  - JOUR
AU  - Jech, Thomas
TI  - Convergence and submeasures  in Boolean algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 503
EP  - 511
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.262/
DO  - 10.14712/1213-7243.2015.262
LA  - en
ID  - 10_14712_1213_7243_2015_262
ER  - 
%0 Journal Article
%A Jech, Thomas
%T Convergence and submeasures  in Boolean algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 503-511
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.262/
%R 10.14712/1213-7243.2015.262
%G en
%F 10_14712_1213_7243_2015_262
Jech, Thomas. Convergence and submeasures  in Boolean algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 503-511. doi : 10.14712/1213-7243.2015.262. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.262/

Cité par Sources :