Coloring Cantor sets and resolvability of pseudocompact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 523-529.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let us denote by $\Phi(\lambda,\mu)$ the statement that $\mathbb{B}(\lambda) = D(\lambda)^\omega$, i.e. the Baire space of weight $\lambda$, has a coloring with $\mu$ colors such that every homeomorphic copy of the Cantor set $\mathbb{C}$ in $\mathbb{B}(\lambda)$ picks up all the $\mu$ colors. We call a space $X$ $\pi$-regular if it is Hausdorff and for every nonempty open set $U$ in $X$ there is a nonempty open set $V$ such that $\overline{V} \subset U$. We recall that a space $X$ is called feebly compact if every locally finite collection of open sets in $X$ is finite. A Tychonov space is pseudocompact if and only if it is feebly compact. The main result of this paper is the following: Let $X$ be a crowded feebly compact $\pi$-regular space and $\mu$ be a fixed (finite or infinite) cardinal. If $\Phi(\lambda,\mu)$ holds for all $\lambda \hat{c}(X)$ then $X$ is $\mu$-resolvable, i.e. $X$ contains $\mu$ pairwise disjoint dense subsets. (Here $\hat{c}(X)$ is the smallest cardinal $\kappa$ such that $X$ does not contain $\kappa$ many pairwise disjoint open sets.) This significantly improves earlier results of [van Mill J., {Every crowded pseudocompact ccc space is resolvable}, Topology Appl. 213 (2016), 127--134], or [Ortiz-Castillo Y. F., Tomita A. H., {Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable}, Conf. talk at Toposym 2016].
DOI : 10.14712/1213-7243.2015.261
Classification : 54A25, 54A35, 54D30, 54E35
Keywords: pseudocompact; feebly compact; resolvable; Baire space; coloring; Cantor set
@article{10_14712_1213_7243_2015_261,
     author = {Juh\'asz, Istv\'an and Soukup, Lajos and Szentmikl\'ossy, Zolt\'an},
     title = {Coloring {Cantor} sets and resolvability  of pseudocompact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {523--529},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2018},
     doi = {10.14712/1213-7243.2015.261},
     mrnumber = {3914718},
     zbl = {06997368},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.261/}
}
TY  - JOUR
AU  - Juhász, István
AU  - Soukup, Lajos
AU  - Szentmiklóssy, Zoltán
TI  - Coloring Cantor sets and resolvability  of pseudocompact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2018
SP  - 523
EP  - 529
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.261/
DO  - 10.14712/1213-7243.2015.261
LA  - en
ID  - 10_14712_1213_7243_2015_261
ER  - 
%0 Journal Article
%A Juhász, István
%A Soukup, Lajos
%A Szentmiklóssy, Zoltán
%T Coloring Cantor sets and resolvability  of pseudocompact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2018
%P 523-529
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.261/
%R 10.14712/1213-7243.2015.261
%G en
%F 10_14712_1213_7243_2015_261
Juhász, István; Soukup, Lajos; Szentmiklóssy, Zoltán. Coloring Cantor sets and resolvability  of pseudocompact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 59 (2018) no. 4, pp. 523-529. doi : 10.14712/1213-7243.2015.261. http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.261/

Cité par Sources :